baoya_yg
体验,让枯燥数学生动起来摘要:为适应新时期教学理念,在教学中我们要让学生喜欢你的数学课,运用教学案例在数学课堂中发挥作用,使课堂教学更为生动 关键词:案例 生动 长期以来,数学留在很多学生心里的强烈印象,就是枯燥的计算、刻板的公式、远离现实生活的应用题,初中生学习数学是脱离于生活的一种纯符号的逻辑演绎,学生怕学,甚至厌学。在实际数学教学中,我们不难发现有很多学生怕学数学,认为数学太抽象,不易理解。而面对新课程的改革的大潮中,被传统教材培养长大,已经非常习惯了传统教材的我,一度也很迷茫,如何才能有效的实施课堂教学?如何让学生从怕学、厌学到不怕,甚至喜欢数学?如何使数学课堂能够充满活力呢?以下是我对这一问题的初探。我所在的学校是一所农村中学,到我们学校来就读的学生大部分是因为成绩不佳、家庭经济条件差等原因已无择校机会而就近入学的学生,这些原因也就构成了学生从小在学习时没有一个良好的学习环境,在家学习时没有得到来自家长的较严格督促和指导,在面对学习困难时也基本得不到有效帮助,在面对挫折时也很难得到及时的疏导和鼓励,在我的家访中能发现更有一部分家庭,由于父母工作不顺利、家庭其他问题等原因,家长对学生在学习中遇到的失败简单以责骂甚至拳脚对待,或者不管不问,这些都是导致学生怕数学,甚至讨厌数学的主要原因之一。2、长期以来我们的数学教学还常常处于“教材是什么,我们就教什么”,有时我们把数学与生活的天然联系割裂开来,鲜活的数学异化成了纯粹的符号系统,成了游离于生活之外的另一抽象的世界。这也是学生感觉数学枯燥无味的一大原因。3、从学生的思维特点看,他们的思维是具体、形象的,他们对数学概念理解不是按我们成人意志“直接教会学生的”,而是要通过学生的形象思维,借助对客观事物表象的理解后而产生的。单一的接受式教学让学生感觉数学的学习是那样的单调,呆板,毫无乐趣。对于学生的家庭现状我无力去改变,唯一我能做的是改变我的教学方法,去适应学生的要求。于是结合数学自身的特点,遵循学生学习数学的心理规律去创设情景,从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用,在传授知识的同时,创设更多让学生感受和体验的过程,进而使学生获得对数学知识的理解。主要我尝试了以下做法:1、创设有效情景,引入课题,在课堂一开始就牢牢抓住学生的注意力。例如我在教数学代数式是我采用了如下方法:测量自己未来身高,首先我先问我的学生想知道自己的未来身高吗?他们听后一起说:“想”。我就在黑板上写下了两个公式,了两个公式,男孩成人身高:X+Y)/2*08, 女孩成人身高:(923X+Y)/2。其中X表示父亲的身高,Y表示母亲的身高。学生都怀着提到的兴趣,以极快的速度计算着,很快,每个学生的预测身高都出来了,他们兴奋地互相报着,带着惊奇的表情,有个男生脱口而出:“哇!我能长到一米八五!”此时,我不失时机地讲着:“每位同学求出的这个数值,就叫做这个代数式的值,刚才大家用自己的父母身高代替x、y计算的过程就是求代数式的值。”学生恍然,而且印象深刻。这样的例子能举很多,把数学和生活联系起来,让学生明白数学并不是遥不可及、枯燥无味的知识,它就发生在我们身边。2、在课堂教学中,多开展观察、实验、猜测、验证、推理与交流等数学活动,让学生在亲身的体验之中去发展智力,提高数学能力。《整式的乘法》是七年级上的重要内容,它是初中阶段数学运算的重要基础,其中包括的基本运算很多,如同底数幂的乘法、幂的乘方、积的乘方,在此阶段的学习对于学生来说是一个重点更是一个难点。当然直接告诉学生运算法则,然后死记硬背也能让学生开展计算,这样的教学也容易简单的多,但是这样的教学效果是暂时的,不持久的。我在课堂上组织学生通过观察一系列的式子,让学生猜测其中可能包含怎样的运算法则,然后再验证同学所作的猜测,整个过程始终让学生交流,让学生体验学习的过程,对于知识的把握有实际理解何感受,由于这样的授课方式,在我讲到《积的乘方》这一节课时,学生已经学会了“观察——猜测——验证”这种解决数学问题的思维方式。通过这些数学活动,学生对知识的产生有一个直观、清醒的知识体验过程,虽然我从没让学生默写背诵过这些公式,但是这些公式却在学生心里扎下了根。3、创设操作活动,让学生体验直观的数学感受。在课堂教学中要为学生搭建活动、操作的平台,具体做法是,把数学问题设计成“动手操作题”。我在教学探索直线平行的条件一课时,先设疑:同学们把准备好的一副三角尺拿出来,利用一副三角尺上的一对直角,能否拼成同位角、内错角、同旁内角?学生分小组讨论,然后让学生自己动手操作。有的学生拼出了同位角,有的学生拼出了内错角,还有的学生拼出了同旁内角,这时就可以给出两条直线平行的条件。这种方法会让学生的记忆更加深刻。在讲解《对长方体的再认识》这一章内容时,由于是立体的几何图形,我用一个具体长方体的盒子培养学生的空间想象能力,实践证明,学生对长方体知识的掌握非常好,在期末考试中只有1名同学在一道关于长方体的选择题上出错。借助于这种方法帮助学生理解知识,收到了很好的效果。4、换位思考,体验学生的思考方式,让学生在感受中明白自己思维的误区,从而强化对正确数学知识的理解。我想无论采取哪种教学方式,学生在理解的过程中总会与教师的愿望有所偏差,那么我们不妨反其道而行之,顺着学生的思路,让学生自己体会与感悟,从而选择正确的思考问题的方式。例如:我在上《分组分解法因式分解》时,我想让同学理解,判断正确分组的依据是:产生新的公因式或能继续用其他方法分解下去,但是同学的理解却不是这样,比如分解因式6k2+9km—6mn—4kn,我想教会学生此题的分组方法可以是一、二项一组,三、四项一组,或者一、四项一组,二、三项一组,但是此时有部分同学有不同意见,他们认为一、三项一组,二、四项一组也行,我这时没有直接告诉学生这样的分组方式不好,而是顺着学生的思维,板演了他们的做法,当要继续往下分解时,学生却发现不能分解了,我马上抓住这个机会,纠正了学生的思维错误的同时,让学生总结正确分组的依据,学生对这一知识的掌握就是牢靠的。经过一年多的尝试,我感受到了体验教学给我和我的学生带来的好处。首先:培养学生的非智力因素,激发了学生对学习数学的兴趣,养成了较良好的学习习惯,培养了学生坚韧、不屈不饶的学习意志,对于我提出的数学学习要求,学生能较好的贯彻实施。其次:培养学生的创新意识和探究能力。我在讲《整式乘法》的知识时,有意识的向学生灌输了“数形结合”的数学思想,用图形知识来验证整式乘法法则的猜想,从单项式乘以单项式开始,当我讲到多项式乘以多项式时,我让学生考虑如何用图形来验证测想,班级里有相当一部分学生已经在尝试用图形验证猜想。最后:学生的成绩有了较明显的提高。五、反思和总结通过在新教材中尝试让学生体验性学习,我有了一定的收获,在某种程度上更新了教学观念,对于什么样的知识需要学生体验获得有了一定的认识,但是我也注意到在对学生进行体验式教学时也要防止对接受式学习的全盘否定,有些知识对于学生来讲还需要接受式学习。另外我们要善于挖掘生活中的数学,丰富课堂教学内容,教师在教学中也要把握好课程标准,吃透教学内容,吃透学生,并结合具体的课时内容进行选择,克服教学的盲目性和一味地追求体验性,生活化,而忽视了知识本身的落实。在体验性学习过程中,要关注到每一位学生,使不同程度的学生都有能力参与到体验性学习中,能从中收获成功,得到鼓励,培养他们对学习数学的兴趣。在开始阶段千万不可将体验性学习的难度要求提的过高,更多的以鼓励同学参与体验、参与学习为主 
一、课内重视听讲,课后及时复习。 新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。 二、适当多做题,养成良好的解题习惯。 要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。 三、调整心态,正确对待考试。 首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。 在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。 由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。 如何学好数学2 高中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。 有的同学觉得学好教学是为了应付升学考试,因为数学分所占比重大;有的同学觉得学好数学是为将来进一步学习相关专业打好基础,这些认识都有道理,但不够全面。实际上学习教学更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。曾有一位领导告诉我,他的文科专业出身的秘书为他草拟的工作报告,因为华而不实又缺乏逻辑性,不能令他满意,因此只得自己执笔起草。可见,即使将来从事文秘工作,也得要有较强的科学思维能力,而学习数学就是最好的思维体操。有些高一的同学觉得自己刚刚初中毕业,离下次毕业还有3年,可以先松一口气,待到高二、高三时再努力也不迟,甚至还以小学、初中就是这样“先松后紧”地混过来作为“成功”的经验。殊不知,第一,现在高中数学的教学安排是用两年的时间学完三年的课程,高三全年搞总复习,教学进度排得很紧;第二,高中数学最重要、也是最难的内容(如函数、立几)放在高一年级学,这些内容一旦没学好,整个高中数学就很难再学好,因此一开始就得抓紧,那怕在潜意识里稍有松懈的念头,都会削弱学习的毅力,影响学习效果。 至于学习方法的讲究,每位同学可根据自己的基础、学习习惯、智力特点选择适合自己的学习方法,我这里主要根据教材的特点提出几点供大家学习时参考。 l、要重视数学概念的理解。高一数学与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-l)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而 y=f(x-l)与 y=f(1-x)的图象却关于直线 x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。 2‘学习立体几何要有较好的空间想象能力,而培养空间想象能力的办法有二:一是勤画图;二是自制模型协助想象,如利用四直角三棱锥的模型对照习题多看,多想。但最终要达到不依赖模型也能想象的境界。 3、学习解析几何切忌把它学成代数、只计算不画图,正确的办法是边画图边计算,要能在画图中寻求计算途径。 4、在个人钻研的基础上,邀几个程度相当的同学一起讨论,这也是一种好的学习方法,这样做常可以把问题解决得更加透彻,对大家都有益。
一、配方法配方法是对数学(shuxue)式子进行一种定向变形(配成"完全平方")的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用"裂项"与"添项"、"配"与"凑"的技巧,从而完成配方。有时也将其称为"凑配法"。最常见的配方是进行恒等变形,使数学(shuxue)式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。二、换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。三、待定系数法要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)g(x)的充要条件是:对于一个任意的a值,都有f(a)g(a);或者两个多项式各同类项的系数对应相等。待定系数法解题的关键是依据已知,正确列出等式或方程。使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。使用待定系数法,它解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决。如何列出一组含待定系数的方程,主要从以下几方面着手分析:①利用对应系数相等列方程;②由恒等的概念用数值代入法列方程;③利用定义本身的属性列方程;④利用几何条件列方程。比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程。四、定义法所谓定义法,就是直接用数学定义解题。数学中的定理、公式、性质和法则等,都是由定义和公理推演出来。定义是揭示概念内涵的逻辑方法,它通过指出概念所反映的事物的本质属性来明确概念。定义是千百次实践后的必然结果,它科学地反映和揭示了客观世界的事物的本质特点。简单地说,定义是基本概念对数学实体的高度抽象。用定义法解题,是最直接的方法,本讲让我们回到定义中去。五、数学归纳法归纳是一种有特殊事例导出一般原理的思维方法。归纳推理分完全归纳推理与不完全归纳推理两种。不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n)时成立,这是递推的基础;第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。这两个步骤密切相关,缺一不可,完成了这两步,就可以断定"对任何自然数(或n≥n且n∈N)结论都正确"。由这两步可以看出,数学归纳法是由递推实现归纳的,属于完全归纳。运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。六、参数法参数法是指在解题过程中,通过适当引入一些与题目研究的数学对象发生联系的新变量(参数),以此作为媒介,再进行分析和综合,从而解决问题。直线与二次曲线的参数方程都是用参数法解题的例证。换元法也是引入参数的典型例子。辨证唯物论肯定了事物之间的联系是无穷的,联系的方式是丰富多采的,科学的任务就是要揭示事物之间的内在联系,从而发现事物的变化规律。参数的作用就是刻画事物的变化状态,揭示变化因素之间的内在联系。参数体现了近代数学中运动与变化的思想,其观点已经渗透到中学数学的各个分支。运用参数法解题已经比较普遍。参数法解题的关键是恰到好处地引进参数,沟通已知和未知之间的内在联系,利用参数提供的信息,顺利地解答问题。七、反证法与前面所讲的方法不同,反证法是属于"间接证明法"一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。法国数学家阿达玛(Hadamard)对反证法的实质作过概括:"若肯定定理的假设而否定其结论,就会导致矛盾"。具体地讲,反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。反证法所依据的是逻辑思维规律中的"矛盾律"和"排中律"。在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的"矛盾律";两个互相矛盾的判断不能同时都假,简单地说"A或者非A",这就是逻辑思维中的"排中律"。反证法在其证明过程中,得到矛盾的判断,根据"矛盾律",这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以"否定的结论"必为假。再根据"排中律",结论与"否定的结论"这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。反证法的证题模式可以简要的概括我为"否定→推理→否定"。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是"否定之否定"。应用反证法证明的主要三步是:否定结论→推导出矛盾→结论成立。实施的具体步骤是:第一步,反设:作出与求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;第三步,结论:说明反设不成立,从而肯定原命题成立。在应用反证法证题时,一定要用到"反设"进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫"归谬法";如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫"穷举法"。在数学解题中经常使用反证法,牛顿曾经说过:"反证法是数学家最精当的武器之一"。一般来讲,反证法常用来证明的题型有:命题的结论以"否定形式"、"至少"或"至多"、"唯一"、"无限"形式出现的命题;或者否定结论更明显。具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆