期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    6

  • 浏览数

    327

AAAAS
首页 > 期刊问答网 > 期刊问答 > 数学史概论论文题目

6个回答 默认排序1
  • 默认排序
  • 按时间排序

hfj1010

已采纳
_new_10708/感觉这个网站应该对你很有帮助进去自己看看吧

数学史概论论文题目

263 评论(8)

xcl400

一、数学知识研究 传统上认为数学教师至少要掌握他所教的数学知识。班级授课制成熟后,人们开始同意这样一个原则:除了所教的数学知识以外,数学教师还需要掌握像组织教学、控制课堂秩序等一些教学知识。随着教学研究的深入,人们发现教师仅仅知道他所教的数学的术语、概念、命题、法则等知识是不够的。…除此之外,教师还要知道数学的学科结构。学科结构的概念最早源于Schwab。他指出了理解学科结构的两种方式:一个方式是句法性地(syntactically),另一个方式是实体性地(substantively)。所谓句法性地是指从学科所表现出来的逻辑结构方面去了解学科结构。比如,引入无理数表示不可公度线段,引入负数与复数表示某些方程的解。前者可以看到,后者看不到,仅是为了保持方程都有解这个论断的完整性和通用性所做出的一种假设与解释。对这三个概念含义的理解,只能通过产生这些概念的前后联系才能揭示。所谓实体性地是指从学科的概念设计角度去了解学科结构。比如,欧氏几何与解析几何有不同的概念框架。Ball把数学的学科结构知识称为关于数学的知识。它是指知识从哪里来,又是如何发展的,真理是如何确认的,又将用到哪里去。 主要有三个维度:一是约定与逻辑建构的区别。正数在数轴的右边或者我们使用十进位值制都是任意的、约定的。而0做除数没有定义或者任意一个数的零次幂都等于1就不是任意的、约定的;二是数学内部之问的联系以及数学与其他领域之间的联系;三是了解数学领域中的基本活动:寻找模式、提出猜想、证明断言、证实解法和寻求一般化。 对数学知识的研究,拓宽了人们对教学用的数学知识的理解。它显示教学用的数学知识是很复杂的,除了术语、概念、法则、程序之外,还有数学学科结构或者关于数学的知识。这些知识对于教师确定为什么教、选择教什么和怎么教都会产生影响。比如,约定的与逻辑建构的概念的教学策略会有很大的不同,逻辑建构的概念就必须讲清楚它怎么来的,为什么要定义这个概念,怎样定义,它会有什么用,它与其他的概念的关系是怎样的,它的应用有哪些限度。而约定的概念就没有这些必要。但是,有效地数学教学,仅仅具有上述知识还不够。它缺少对学生的考虑,不能给教师提供教授一群特定的学生所必须的教学上的理解。比如,仅仅通过推导知道(+6)=a+2ab+b对有效教学是不够的,教师还需要知道一些学生容易把分配律过度推广而记成+6)=a+b,知道用矩形的面积表征可以有效地消除这一误解。学生误解的知识与消除误解的教学策略显然不能纳入数学知识的框架,教学用的数学知识的复杂性要求更精致的框架来描述。 二、教材分析研究 有效的教学必须考虑学生已有的知识和知识呈现的最佳序列。在数学学科中,马力平的知识包(Knowledgepackage)是国际上较为典型的此类研究。知识包是围绕着一个中心概念而组织起来的一系列相关概念,是在学生的头脑里培育这样一个领域的纵向过程。(n知识包含有三种主要成分:中心概念、概念序列和概念结点,也包括概念的表征、意义和建立在这些概念之上的算法。下例是20以内数的加减法的知识包(图1)。在这个知识包内,中心概念是20至100数的“借位减法”,它是学习多位数的加减的关键前提。 马力平的知识包实际上是我国内地传统的教材分析研究。这类研究结果是教学参考书的主要内容之一。它是一种课程知识,是教师对课程的分析,比对数学知识的分析更接近教学用的数学。但它也不是教师教学时使用的数学知识。它最多是教师对教学的考虑,没有考虑师生互动时产生的数学需求。教师在教学时,能够动员起来的知识不一定符合教学情境的需要。比如教师预期的一种学生的反应在与学生的互动中没有出现,教师以学生的这种反应为跳板的后继知识就没有了用武之地。马力平概括出的知识包,与教师在课堂教学时使用的数学知识还有一段距离,教师在教学时可能用得上,也可能用不上。教师在教学时所需要的数学知识远远超出教材分析所能提供的内容。
98 评论(13)

蒋梦杰

1111111111111111
255 评论(15)

youbuliao

1、论文题目:要求准确、简练、醒目、新颖。 2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录) 3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。 4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。 主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。 5、论文正文: (1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。 〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容: 提出-论点; 分析问题-论据和论证; 解决问题-论证与步骤; 结论。 6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。 中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是: (1)所列参考文献应是正式出版物,以便读者考证。 (2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。
349 评论(13)

童真无趣

数学中的测量在现实生活中的应用 论死亡时间的推断在法医学中,关于死亡时间的推断有多种方法,如:尸体的尸斑状况,肌肉僵硬程度等各种尸体现象。由于人死后,体内产热停止、排汗停止、各种调节机制停止,并且尸体所在位置、尸体形状均保持不变(除非人为改变),因而尸体体温的下降会有比较稳定的规律,所以从尸体温度来进行死亡时间推断是比较准确可靠的。 现在给出死亡时间推断的定量方法:设尸体温度为T,周围环境温度为C 在理想状况下,温度的变化率(dT/dt)与该物体的温度和周围环境温度的差(T-C)成正比,则: dT/dt=-k*(T-C) (k>0) 其中,k是由物体与空气接触状况决定的、正的、由实验测定的常数;等号右边的负号表示当物体温度比周围环境温度高时,物体将降温(则dT/dt<0);同理,当T0,则表示物体升温。 现在解此微分方程: dT/dt=-k*(T-C) =>1/(T-C)*dT=-k*dt =>∫1/(T-C)*dT=∫-k*dt =>∫1/(T-C)*d(T-C)=∫-k*dt =>㏑(T-C)= -k*t+B (B是积分常数,由初始条件确定) =>T-C=e^(-k*t+B) (e是自然常数,e=7182818245…) (*) 设时间为0时物体的温度为T。,则: T。-C=e^(0+B) =>T。-C=e^B 把T。-C=e^B代入(*)式中,得: T-C=e^(-k*t+B)=e^(-k*t)*e^B= e^(-k*t)*( T。-C) T(t)=C+( T。-C)* e^(-k*t) 于是,物体的冷却规律为: T(t)=C+( T。-C)* e^(-k*t) 其中,C表示周围环境温度,T。表示开始计时时物体的温度,T(t)表示由T。开始经过时间t后物体的温度,k是由实验测定的正的常数。此公式可用于估算死亡时间,换一种表示形式为:t=-1/k*㏑[(T-C)/ ( T。-C)] 现在进行误差分析:(1)由于尸体状况基本保持不变(好在尸体自身不会动,否则就不再是科学问题了),因而k的值比较稳定; (2)一般情况下,周围环境温度C变化不大,可当作常数处理。 然而,现实中k与C始终会有所变化,所以为了使推断更为精确,现在对公式进行修改: (1)由于环境温度始终会有波动式的变化,可以引入周围环境温度函数C(t)进行修补; (2)事实上,虽然尸体自身状况不会对k的值造成较大影响,但是,空气对流状况、空气湿度变化会对k造成影响,因而可引入一个函数σ(t)对k进行修正,则有: k=k。+σ(t),这里,我把函数σ(t)称为修正函数。于是,我们得到更为准确的微分方程,这是解除了“理想状况”限制的更为一般的方程:dT/dt=-(k。+σ(t))*(T-C(t)) 对此方程进行移项: dT/dt+( k。+σ(t))*T=( k。+σ(t))*C(t) 为表示方便,记P(t)= k。+σ(t),Q(t)= ( k。+σ(t))*C(t) 于是上式变为: dT/dt+P(t)*T=Q(t) 不难发现,dT/dt+P(t)*T=Q(t)是一个一阶线性非齐次常微分方程。 解此方程得: T(t)= e^(-∫P(t)*dt)*[∫Q(t)* e^(∫P(t)*dt)*dt+B] 其中,P(t)= k。+σ(t),Q(t)= ( k。+σ(t))*C(t),B是积分常数,由初始条件决定。在这里,C(t)通过对周围环境温度进行记录得到,σ(t)则根据具体修正需要(如精确度)进行制定。关于死亡时间的推断是一个相当复杂的课题,在这里只是从理论角度进行了粗略的研究。 至于修正函数σ(t)的获得,将会在今后的论文中进行具体的探讨。
262 评论(13)

阿童木木

对数学应用意识的考察是高考数学命题的一个重要方面,要求学生能够运用所学的数学知识、思想和方法,构造数学模型,将实际问题转化成数学问题,以及转化以后如何综合运用学科内知识解决数学问题。而三角函数的应用题考查也是高考命题的热点之一。由于导数为我们研究函数提供了一个新的方法,在导数和三角的交汇点处命题将是高考命题的一个方向。 以下通过几个例子来谈一谈。 例 如图所示的等腰梯形是一个简易水槽的横断面,已知水槽的最大流量与横断面的面积成正比,比例系数为() (Ⅰ)试将水槽的最大流量表示成关于函数; (Ⅱ)求当多大时,水槽的最大流量最大 解析:(1)由题意其中。 (2)令 又因为,而在上递减,当=60时水槽的流量最大。 点评:导数为求函数的最值,单调性,极值等提供了新的方法,在解题的时候要注意这一方法的应用。随着高考命题改革的不断深入,高考命题强调知识之间的交叉、渗透和综合。从学科的整体高度考虑问题,在知识网络的交汇点处设计试题,是命题的一种趋势,我们应当研究此类试题,掌握其解法,不断提高解题能力。 类题如图,矩形纸片的边24,25,点、分别在边与上现将纸片的右下角沿翻折,使得顶点翻折后的新位置恰好落在边上设,,关于的函数为,试求: (1)函数的解析式;(2)函数的定义域; (3)的最小值 解:(1)设,则 由于,, 则,即 而,, 所以,解得 故 (2)因为,故当点E与点A重合时, = 当点E向右运动时,BE长度变小,为保持点B1在边AD上,则点F要向上运动,从而BA的长度变大,则就变小,当点F与点C重合时, 取得最小值 又当点F与点C重合时,有,即,解之得 或(舍) 所以,又是锐角,所以 综上,函数的定义域为 (3)记,因为,所以函数上单调递减,则当时,取得最大值为 从而的最小值为 例 (2008江苏高考17).某地有三家工厂,分别位于矩形ABCD的顶点A,B,及CD的中点P处,已知km, ,为了处理三家工厂的污水,现要在矩形ABCD的区域上(含边界),且A,B与等距离的一点O处建造一个污水处理厂,并铺设排污管道AO,BO,OP,设排污管道的总长为ykm。(I)按下列要求写出函数关系式:设,将表示成的函数关系式;设,将表示成的函数关系式。(II)请你选用(I)中的一个函数关系式,确定污水处理厂的位置,使三条排水管道总长度最短。解析:(I)①由条件可知PQ垂直平分AB,,则故,又,所以。②,则,所以,所以所求的函数关系式为。选择函数模型①。 。令得,又,所以。当时,,是的减函数;时,,是的增函数。所以当时。当P位于线段AB的中垂线上且距离AB边处。 点评:本题第二小问中若选用函数模型②则,令=0则 ,即,故当时三条排水管道总长度最短。本题能体现数学应用,关注社会生活。以污水处理为背景,体现试卷设计问题背景的公平性,对推动数学教学中关注身边的数学起到良好的导向。 类题 如图,是沿太湖南北方向道路,为太湖中观光岛屿, 为停车场,km.某旅游团游览完岛屿后,乘游船回停车场Q,已知游船以km/h的速度沿方位角的方向行驶,.游船离开观光岛屿3分钟后,因事耽搁没有来得及登上游船的游客甲为了及时赶到停车地点与旅游团会合,立即决定租用小船先到达湖滨大道M处,然后乘出租汽车到点Q(设游客甲到达湖滨大道后能立即乘到出租车).假设游客甲乘小船行驶的方位角是,出租汽车的速度为66km/h.(Ⅰ)设,问小船的速度为多少km/h时,游客甲才能和游船同时到达点Q;(Ⅱ)设小船速度为10km/h,请你替该游客设计小船行驶的方位角,当角余弦值的大小是多少时,游客甲能按计划以最短时间到达.解:(Ⅰ) 如图,作,为垂足.,,,在△中, (km), =(km).在△中,(km) .设游船从P到Q所用时间为h,游客甲从经到所用时间为h,小船的速度为 km/h,则 (h), (h). 由已知得:,,∴.∴小船的速度为km/h时,游客甲才能和游船同时到达. (Ⅱ)在△中,(km),(km).∴(km). ∴=.∵, ∴令得:.当时,;当时,.∵在上是减函数,∴当方位角满足时,t最小,即游客甲能按计划以最短时间到达.
255 评论(8)

相关问答