期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    3

  • 浏览数

    236

luqicong
首页 > 期刊问答网 > 期刊问答 > 数学思维能力论文

3个回答 默认排序1
  • 默认排序
  • 按时间排序

hhh8023

已采纳
数学论文培养大学生数学思维的能力论文摘要:数学不应该被看成单纯的工具,它对思维训练也有着十分重要的意义。大学生应该培养数学的形象、抽象、直觉与函数思维。培养大学生数学思维,需要优化大学生思维方式,培养逻辑思维能力与直觉思维能力。关键词:数学;大学生;思维能力一、数学思维的概念及结构分析数学思维作为思维的一种特殊形式,是人脑运用数学符号与数学语言对数学对象间接概括的反映过程。具体地说,数学思维是以数学概念为细胞,通过数学判断和数学推理的形式揭示数学对象的本质和内在联系的认识过程。数学思维既从属于一般的人类思维,受到一般思维规律的制约,又具有不同于一般思维的特点,数学思维是一种高级形态的思维,属于现代抽象思维的范畴。数学思维的功能性结构是一个三维的立体结构,三条坐标轴分别是思维内容、思维方法和个体发展水平,这三部分的相互作用就构成了数学思维能力。数学思维能力是各种数学能力的核心,内容是思维主体面临的思维对象,包括数学概念、法则、命题以及各种数学理论问题与实践问题等。数学思维方法是数学方法的核心,是数学思维活动的步骤和格式,是对思维内容进行加工的方式和程序。个体发展水平则是指主体的思维品质和非智力品质,其中思维品质包括深刻性、广阔性和灵活性等,非智力品质包括动机、情感和意志等,它们在思维活动中发挥着重要的作用。二、培养什么样的数学思维能力(一)形象思维。形象思维即具体思维,它包括非操作性的形式(观察、感知等)和操作性形式(对事物或其模型直接进行操作等)。大学生在感观、操作等方面较以前都有了很大的提高,能力有了一定的增强,记忆方式由机械性记忆逐步向理解性记忆转变,他们渴望进行自主学习。(二)抽象思维。抽象思维是与抽象化活动密切联系的思维活动,是高等数学的核心和基础,抽象思维充分体现了高等数学学科的高度严密性和严谨性,也是学生需要着重培养的一种数学思维。这里的抽象化有双重性,即在抽取其本质属性的同时剥离其余的非本质属性。(三)直觉思维。直觉思维是认识的特殊方法,它是对数学对象、结构以及规律关系的敏锐想象和迅速判断的思维方式,其特点是直接解决问题或得出真理。(四)函数思维。函数思维是指从数学对象、性质之间的相互关系中认识事物的一种思维。函数是高等数学中一个重点的研究对象,我们解决现实生活中的许多问题都涉及函数关系的确定和解决。三、如何培养大学生的数学思维能力要培养大学生具备较好的数学思维是一个长期艰巨的过程。基本策略是:重思想的形成、促观念的培养。要特别注意做到以下几点:(一)优化思维方式。如果学生在学习过程中,对所学知识的理解不够深刻、准确,或者其新旧知识不能建立联系,就会造成认识上的不足和理解上的偏差,在解决具体问题时,出现思维不够严密或者不够灵活的现象。因此,应该引导学生优化思维方式,培养思维的严密性和灵活性。1、修正思维的误差,培养思维的严密性部分学生在解决数学问题时,不注意挖掘所研究问题中的隐含条件,产生了思维误差,影响了问题的正确解决。所以,要教会学生充分挖掘隐含条件,及时调控思维过程,修正思维误差,培养思维的严密性。2、转换思维角度,培养思维的灵活性。学生在解题时习惯于从已知出发推演结论,形成单向思维,给解题带来一定的思维障碍。对逆向思维的培养要贯穿于整个学习过程中。3、培养和发展学生的数学探索能力,进而激发学生的创新思维。数学的探索及创新能力是数学思维中最具创造性和挑战性的要素,也是数学思想的核心,数学几千年的发展史就是人们不断探索和创新的历史。(二)培养逻辑思维能力。逻辑思维能力是思维能力的重要组成部分,逻辑思维的主要形式是概念、判断和推理,它是证明结论的主要工具。在抽象定义、推导公式、证明定理、运用知识解决问题时,都在运用逻辑思维。1、培养理解概念、应用概念解决问题的能力。理解能力是学习数学的基础,学生在学习过程中,如果对一些数学概念或数学原理的发生、发展过程没有深刻地理解,就不能把握问题的本质。因此,要深刻理解概念、法则、公式、定理的实质,应用概念去解决问题。2、培养推理判断的能力。推理判断能力是逻辑思维能力的重要组成部分,培养推理判断能力要在学生深刻理解概念的基础上,学生应该掌握必要的推理和判断方法,如归纳法、演绎法、类比法、穷举法、特例法、反证法等,并通过一定的训练加以巩固,从而提高推理判断的能力。提高学生的推理能力要注意推理过程的学习(包括逻辑推理和直觉推理),一开始就要养成推理过程,步步有根据步步都严密的习惯。3、培养学生的抽象概括能力。要善于将数学材料中反映的数与形的关系从具体的材料中抽象出来,概括为特定的一般关系和结构,做好抽象概括的示范工作,要特别注意重视分析和综合的学习;另外,在解题中要注意发掘隐藏在各种特殊细节后面的普遍性,找出其内在本质,善于抓住主要的、基本的和一般的东西;要鼓励学生平时对于一些问题进行经常性的概括和总结,培养学生概括的习惯。

数学思维能力论文

193 评论(8)

yanglei901

在小学数学教学中,提高学生学习数学的兴趣,培养良好的学习习惯,培养学生的逻辑思维能力、运算能力、空间想象能力和解决简单实际问题的能力是实施素质教育重要前提条件。真正做到授人以渔而不是授人以鱼,为学生将来的学习奠定基础。新课标确立了知识与技能、过程与方法、情感态度与价值观三纬一体的课程目标,将素质教育的理念体现在课程标准之中,通过引导学生主动参与、亲身实践、独立思考、合作探究,从而实现学习方式的转变,发展学生搜集信息、处理信息、获取新知、分析解决问题、合作交流的能力。那么,教师怎样通过明理启发、诱导,培养学生的思维能力,就此谈谈一些教学体会。一、激发小学生的学习兴趣,引发数学思维。大教育家赞科夫说:“在各科教学中要始终注意发展学生的逻辑思维,培养学生的思维灵活性和创造性。”大家都说:“兴趣是最好的老师。”这些都是站在自身的立场上来阐明思维与兴趣的重要性,这是把思维与兴趣分开来看。如果把思维和兴趣这两者结合起来,将会达到更加完美的效果。随着教育教学改革的深入发展,在数学教学中如何有目的、有计划、有步骤地培养学生的思维能力,是每一个数学教师十分关心的问题。教师应吃透教材,把握教材中的智力因素,积极地进行教学。数学教学中激发学生的学习兴趣是非常重要的环节之一。从心理学角度看,如何抓住学生的某些心理特征,对教学将起到一个巨大的推动作用。兴趣的培养就是一个重要的方面,兴趣能激发大脑组织,有利于发现新事物和事物的新要素,并进行积极探索创造。兴趣是学生学习的最佳营养和催化剂。学生对学习有兴趣,对学习材料的反映也就最清晰。思维活动是最积极有效的,它能使学习达到事半功倍的效果。那么,怎样激发学生的数学思维兴趣,调动数学思维的积极性呢?1、利用演示、操作。演示可把图由静变动,能更好吸引学生的注意,起到直观的效果;操作是一种辅助的教学手段,恰当运用直观操作,师生互动,让学生运用多种感官参与学习。这样,既提高了学生学习数学兴趣,又增强了思维能力。2、保护好小学生的学习好奇心。好奇心是对所发生的新异事物感到惊奇,引发疑问,进行探究的心理倾问,它也能激发学生强烈的求知欲和浓厚的学习兴趣,有助于点燃思维的火花。3、克服以教师思维代替学生思维、教师讲、问牵着学生听、答的教学现象。要为学生留出足够的思维活动的空间,让学生利用自己的学习方式,在已有的生活经验和认知结构的基础上,自己动手、动脑、动口,在活动探究中发挥创造性,进行自主的建构。4、考虑到学生现有心理水平,按照维果茨基的最近发展区原理,为学生创造一定问题情境,是引发学生思维活动的外部环境因素。古人云:“学起于思,思源于疑”。有疑才能引发学生的求知欲,才能使他们处于积极主动的状态。在教学时通过谈话、设问、提问、实验等各种方法,创设一定的问题情境,可以调动学生参与学习活动的积极性,引起学生主动观察和思考的兴趣。二、以具体的感性材料为基础,逐步提高,促进学生的思维能力。在数学基础知识教学中,加强对定义、法则、定律等的教学,这同时也是对学生进行初步的逻辑思维能力培养的重要手段。但是这方面的教学内容比较抽象,学生年龄小,生活经验不足,抽象能力较差,学习吃力等原因,因而我们只是重视了“算”而忽视了这样一个抽象思维训练的机会。小学生学习抽象的知识,是在感性认识的基础上而产生质的飞跃,感知认识是学生理解知识的基础,具体形象是数学抽象思维的有效途径和重要信息来源。在平时的日常教学中,我们应注意由具体到抽象,逐步提高培养学生的抽象思维的能力。如,在教学“圆的认识”时,先用学生在现实生活中遇到的圆形的物体举例,使学生认识圆与其它平面图形的不同之处,但如何画圆,老师不亲自示范,就让学生自己大胆尝试想法设法。“你们会画出标准的圆形吗?看谁的方法最好最多?”这样,学生学习的好奇心、积极性充分调动起来了,人人动手、动脑,很快,大部分学生知道并学会用圆规及借助圆形物体(如墨水瓶、茶杯盖、硬币等)画圆的方法。这时候,老师及时表扬他们主动动手参与、积极探索,然后再问:“如果要建设一个圆形大花坛或者大水池,能用圆规画出来吗?”这样又进一步激励了学生,他们争先恐后地投入思考动手实践中。通过实践操作,终于又发现了用标杆和绳子可以画较大的圆。多种形式的评价、鼓励、激励思维也很重要。学生个体思维水平因人而异采取不同的评价方式,借助各自思维的“亮点”进行激励,不使任何一个学生的思维火花因评价不当而熄灭。三、 精心设计教学内容,培养学生的数学思维迁移能力这一点不仅要求老师要有过硬的专业知识,善于发现教材中所隐含的深意,还要将拓展意识运用到数学课上。例如涉及到语文知识,可以多讲一些与其相关的课外知识,让学生们理解到各学科之间的联系,学会融会贯通,从真正意义上产生对知识的渴望。 因此培养学生学习数学的求异思维和立体思维至关重要。1、求异思维。对于小学生而言,既要培养他们不盲从,喜欢质疑,打破框框,大胆发表自己意见的品质,又要培养他们敢于求“异”,发展他们的求异思维,进而养成独立思考独立解决问题的习惯。如,一位教师在教学“乘法意义”的运用一课时,出示了这样一道加法题:7+7+7+5+7=?让学生用简便方法计算。于是一个学生提出了7×4+5的方法,而另一个学生则提出了“新方案”,建议用7×5-2的方法解。这个学生的思维有创见,这个方案是他自己发现的。在他的思维活动中,他“看见了”一个实际并不存在的7,他假设在5的位置上是一个7,那么就可以把题目先假设为7×5。接着他的思维又参与了论证:7-2才是原题中的实际存在的5。对于这种在别人看不到的问题中发现问题和提出问题,这种创造性思维的突现,我们要倍加珍惜和爱护。2、立体思维 。一题多解是学生产生浓厚学习兴趣的基础,也是培养学生数学立体思维能力的重要源泉。如,一辆摩托车上午3小时行驶了5千米,照这样计算,下午又行驶2小时,这一天共行驶了多少千米?第一解法先求出平均l小时行驶多少千米,然后求出下午行驶多少千米,最后求出这一天行驶多少千米。综合算式是5÷3×2+5=5(千米)。第二种方法相对比较简便一些,先求出一天共行驶了多少小时,再求出平均每小时行驶多少千米,最后再求出一天共行驶多少千米。综合算式是:5÷3×(3+2)=5(千米)。以上两种方法都很普通,这里还有一种新的解法,算式为:5×2-5÷3=5(千米)。其中,5×2,表示行驶6小时的千米数,5÷3,表示平均l小时行驶的千米数;最后用6小时行驶的千米数减去1小时行驶的千米数,就是这一天5小时行驶的千米数了。这便是一种创新的解法。3、发散思维。学生的思维有时会出现“卡顿”的现象,这就是思维的障碍点,此时教学适时地加以疏导、点拨,促使学生思维转折,并以此为契机促进学生思维发展。例如:甲乙两人共同加工一批零件,计划甲加工的零件个数是乙加工的2/5。实际甲比计划多加工了34个,正好是乙加工零件个数的7/9。这批零件共有多少个?学生在思考这道题时,虽然能够准确地判断出2/5和7/9这两个分率都是以乙加工的零件个数为标准量的,但是,这两个标准量的数值并不相等,这样,学生的思维出现障碍。教师应及时抓住这个机会,引导学生开拓思路:“甲加工的零件个数是乙的2/5”,这说明甲、乙计划加工零件的个数是几比几?“正好是乙加工零件个数的7/9”又说明甲、乙实际加工零件个数是几比几?这样,就将以乙标准量的分率关系转化为以总个数为标准量的分率关系,直至解答出这道题。在这个过程中,教师引导学生由分数联想到比的过程,实际就是学生思维发生转折的过程。抓住这个转折点,有利于克服学生的思维障碍,有利发散思维的培养。因此,在数学教学的过程中,教师要特别注意培养学生根据题目中的具体条件,灵活地运用数学方法,通过变换角度思考问题。这样,就可以发现新方法,制定新策略,长期坚持这样的方法训练,学生一定能产生较强的数学创新思维能力。数学是一门逻辑性、抽象性、系统性很强的学科。如何使小学生的数学基本思维能力得到发展,这将是我们数学教师长期的有意识的教学目标。在教学中,提高学生的学习能力,培养学生的思维意识,多给点思考的机会,多方面培养学生的思维品质,必将成为我们数学教师努力的方向。 让我们给学生一片广阔的天地,给他们一个自由发挥的空间,让他们乐学、好学普学,让他们的数学思维能力在课堂学习中得到充分的发展!
247 评论(9)

joonis

浅议小学数学思维能力的培养发布时间:2016-7-17编辑:互联网教学文摘 思维是人脑对客观事物的一般特性和规律的一种间接的、概括的反映过程。进行思维训练,培养学生的思维能力,是小学数学教学的主要任务之一,是实施素质教育开发学生智能,提高学生素质的重要措施。数学是思维的“体操”,可以锻炼学生的思维能力,使其不断地发展。思维品质主要包括思维的深刻性、灵活性、敏捷性和独创性等,教师在教学实践中从学生的实际出发,根据教学内容有目的有计划地培养学生优良的数学思维品质,是发展学生思维能力的重要手段。沟通知识间的内在联系,培养思维的深刻性思维的深刻性是指思维活动的抽象程度和逻辑水平,它集中表现在善于深入地思考问题,能从复杂的表面现象中,发现和抓住事物的规律和本质。因此沟通知识间的内在联系,是培养思维深刻性的主要手段。开拓思路,培养思维的灵活性思维的灵活性指的是善于从不同角度和不同方面进行分析思考,学生解题的思路广、方法多、解法好就是思维灵活的表现。在数学教学中,教师注重启发学生多角度地思考问题,鼓励联想和提倡一题多解,有助于学生思维灵活性的培养。学生思考问题常常是单一的,教师在关键时刻自然地把学生的思维向高层次引导,这就把学生的思维引向多向。在教学基本概念时,要设法让学生从不同的角度,不同的侧面来理解概念的实质。强化技能训练,培养思维的敏捷性思维的敏捷性是指思维活动的速度,表现在数学学习中能善于抓住问题的本质,正确、合理、巧妙地运用概念、法则、性质、公式等基本知识,简缩运算环节和推理过程,使运算既准又快。因此,强化技能训练是培养思维敏捷性的主要手段。随着学生运算技能的形成,计算过程的中间环节,随着练习而逐步压缩,培养和训练学生从详尽的思维,逐步过渡到压缩省略的思维。这样可以使学生一看到题目,通过感知就能很快地算出得数。强化技能训练一定要在学生切实理解运算法则、定律、性质等基础上,要求学生熟记一些常用的数据,平时坚持适量的口算和应用题练习,通过视算、听算、口答、速算比赛等,采用“定时间比做题数量”、“定做题数量比完成时间”的训练方式,强化学生的基本技能,从而达到培养思维敏捷性的目的。提倡求异思维,探究求新,培养思维的独创性思维的独创性是智力活动的独立创造水平。在教学中要提倡求异思维,鼓励学生探究求新,激发学生在头脑中对已有知识进行“再加工”,以“调整、改组和充实”,创造性地寻找独特简捷的解法,提出各种“别出心裁”的方法,这些都能促进学生思维独创性的形成。 总之,数学是一门培养思维能力的基础课。思维的训练不是靠灌输,而是靠启发,引导和点拨。教师应不断分析、不断总结、不断改进自己的教学工作,在改革中,探寻开展思维训练的方法和途径。
237 评论(15)

相关问答