期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    5

  • 浏览数

    145

yanyong179
首页 > 期刊问答网 > 期刊问答 > 模糊数学课程论文题目推荐高中选修

5个回答 默认排序1
  • 默认排序
  • 按时间排序

周小葱虫

已采纳
1、模糊数学作为一个新兴的数学分支,使过去那些与数学毫不相关或关系不大的学科(如生物学、心理学、语言学、社会科学等)都有可能用定量化和数学化加以描述和处理,从而显示了强大的生命力和渗透力,使数学的应用范围大大扩展2、模糊数学的研究内容主要有以下三个方面:第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系第二,研究模糊语言学和模糊逻辑。人类自然语言具有模糊性,人们经常接受模糊语言与模糊信息,并能做出正确的识别和判断。第三,研究模糊数学的应用。3、模糊数学的应用 模糊数学是一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机职能,不少人认为它与新一代计算机的研制有密切的联系。

模糊数学课程论文题目推荐高中选修

251 评论(8)

hqq_87

数学是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。 中国古代数学的萌芽 原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。 西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。 商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。 公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。 春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。 战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”(无穷大)定义为“至大无外”,“小一”(无穷小)定义为“至小无内”。还提出了“一尺之棰,日取其半,万世不竭”等命题。 而墨家则认为名来源于物,名可以从不同方面和不同深度反映物。墨家给出一些数学定义。例如圆、方、平、直、次(相切)、端(点)等等。 墨家不同意“一尺之棰”的命题,提出一个“非半”的命题来进行反驳:将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的“非半”,这个“非半”就是点。 名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了这种无限分割的变化和结果。名家和墨家的数学定义和数学命题的讨论,对中国古代数学理论的发展是很有意义的。
330 评论(13)

Jyl230080

模糊数学又称Fuzzy 数学,研究和处理模糊性现象的一种数学理论和方法。模糊数学法采用模糊数学模型,须先进行单项指标的评价,然后分别对各单项指标给予透当的权重,最后应用模糊矩阵复合运算的方法得出综合评价的结果。这一方法在地下水环境质量评价中已得到广泛的应用。模糊数学为一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机智能,不少人认为它与新一代计算机的研制有密切的联系。扩展资料1965年,美国控制论专家扎德Zadeh(Lotfi A.Zadeh)教授在Information and Control杂志上发表了题为Fuzzy Sets的论文,提出用“隶属函数”来描述现象差异的中间过渡,从而突破了经典集合论中属于或不属于的绝对关系。Zadeh教授这一开创性的工作,标志着数学的一个新分支——模糊数学的诞生。模糊数学的基本思想就是:用精确的数学手段对现实世界中大量存在的模糊概念和模糊现象进行描述、建模,以达到对其进行恰当处理的目的。模糊数学为以不确定性的事物为其研究对象的。模糊集合的出现为数学适应描述复杂事物的需要,Zadeh的功绩在于用模糊集合的理论将模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处,就能得到弥补。参考资料来源:百度百科-模糊数学法参考资料来源:百度百科-模糊数学
354 评论(13)

cafik

学习“趣味数学”的心得体会你知道0与i谁大谁小?你知道毕达哥拉斯是何许人也?你知道似是而非型悖论和似非而是型悖论的区别么? 你能列举几位著名关于数学悖论的数学家?这些问题原本让学了十几年数学的我不知所答,但随着本学期对“趣味数学”课程地整合学习,我对这些问题逐渐明朗与了解。发现数学的发展伴随着人类的发展,上下五千年的人类文明都蕴藏着十分丰富的数学史料。通过学习让我们更加深入地了解数学的发展历程,以及相关数学悖论的知识。在数学悖论那漫漫长河中,也曾经历经第一、二、三次数学危机的过程,作为人类智慧的结晶,数学悖论不仅是人类文化的重要组成部分,而且始终是推动人类文明进步的重要力量。下面我就举“第一次数学危机”的例子来简单说明数学悖论的实际意义。“第一次数学危机”可以说就是一种悖论——代数悖论。公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。他创立的毕达哥拉斯学派,曾在多个数学领域作出了重要贡献。在对几何量进行研究时,得出结论:任何两条线段都是可通约的,或者说是可以公度的。也就是说两条线段长的比是整数或是一个分数,即为有理数。之后,其学派中一个叫希帕索斯(约公元前470)的成员考虑了这样一个问题:正方形的对角线与边长这两条线段是不是可公度的呢?经过认真考虑,希帕索斯意外的发现:正方形的边和对角线是不可公度的!即:边长为1的正方形其对角线长度既不能用整数,也不能用分数表示。它不是一个有理数,而是一个当时人们完全不了解的全新的数。就是后来的无理数。希帕索斯的发现导致了数学史上第一个无理数的诞生。但在当时,这一发现却与毕达哥拉斯学派的数学观点不符,这一悖论动摇了其学派的数学与哲学根基,并且由于它与人们的经验、直觉也完全相悖,因此在当时数学界掀起一场极大风暴,最终导致了西方数学史上一场大的风波,史称“第一次数学危机”。希帕索斯也因此被推入河里淹死。此次危机产生后,很长一段时间人们都不把无理数当作真正的数。直到19实际中叶,无理数的本质才被测试搞清楚。然而我们可以看到希帕索斯的发现,促使人们进一步去认识和理解无理数。但是,基于生产和科学技术的发展水平,毕达哥拉斯学派及以后的古希腊的数学家们没有也不可能建立严格的无理数理论,他们对无理数的问题基本上采取了回避的态度,放弃对数的算术处理,代之一几何处理,从而开始了几何优先发展的时期,在此后两千年间,希腊的几何学几乎成了全部数学的基础。希帕索斯的发现,同时也说明直觉和经验不一定靠得住,而推理和证明才是可靠的,这就导致了亚里士多德的逻辑体系和欧几里德几何体系的建立。以上只是数学悖论中的一个典型案例,同样数学发展的漫漫长河中往后还相继有了第二、第三次数学危机,而且第三次数学危机至今还未解决。通过对“趣味数学”课程的学习,我提高了自己对于数学的兴趣,同时也教育了我在平时应该多思多想,坚持自己的理想、坚持自己的信念。天才的思想往往是超前的,在我们这些凡夫俗子眼中,的确很难理解他们。但就是在这样的环境下,他们依然默默的坚守着自己的信念,执著着自己的理想。数学家们那种锲而不舍的精神是我们应该努力学习的,正是有了那种精神,他们才能坚守在自己的阵地上直到自己生命的最后一刻,这也许就是他们所认为的幸福。同样,学习数学需要想象力,当面临错综复杂的实际问题时,应能自觉运用数学的思维方式,退到简单入手去观察和思考问题,并努力、小心求证去寻找递推关系以寻求用数学解决问题的办法。这种思考方式不仅在解题中非常重要在生活中更不可或缺!悖论像魔术,变戏法,它既是生动的、有趣的、迷人的,是数学的一个重要部分又是难以应付的对手。同样,悖论也是重要的,历史上众多数学知识的进展都源于对悖论的研究。悖论给人以奇异的美感,它在“荒诞”中蕴涵着哲理,给人以启迪,并带给人特别的趣味与享受。悖论是思维的艺术体操,在生活中处处闪耀着亮光!以上是我在学习“趣味数学”课程后的总结,在学习过程中,我体会到数学的发展并非一帆风顺,它是众多数学先贤前赴后继、辛勤耕耘的奋斗过程,也是克服困难、战胜危机的斗争过程。数学也不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质,日积月累,定有可观的进步。同时我也感受到了数学的趣味性,这对于我们把握数学知识之间的关系和联系有十分重要的意义,同时也让我感受到数学并非是空洞、乏味的,它存在于我们日常生活的各个角落。我们在日常生活也会遇到各种数学的或悖论的的问题,这同样会让我们更好的解决我们所遇到的问题。
298 评论(15)

111030356

模糊数学又称Fuzzy 数学,是研究和处理模糊性现象的一种数学理论和方法。模糊性数学发展的主流是在它的应用方面。由于模糊性概念已经找到了模糊集的描述方式,人们运用概念进行判断、评价、推理、决策和控制的过程也可以用模糊性数学的方法来描述。例如模糊聚类分析、模糊模式识别、模糊综合评判、模糊决策与模糊预测、模糊控制、模糊信息处理等。这些方法构成了一种模糊性系统理论,构成了一种思辨数学的雏形,它已经在医学、气象、心理、控制、遥感、教育、体育等方面取得具体的研究成果。扩展资料应用前景:模式识别是计算机应用的重要领域之一。人脑能在很低的准确性下有效地处理复杂问题。如计算机使用模糊数学,便能大大提高模式识别能力,可模拟人类神经系统的活动。在工业控制领域中,应用模糊数学,可使空调器的温度控制更为合理,洗衣机可节电、节水、提高效率。在现代社会的大系统管理中,运用模糊数学的方法,有可能形成更加有效的决策。50年来,模糊数学的研究和应用取得了许多可喜的成就。它在科学技术领域和日常生活方面正在扮演着越来越重要的角色。
277 评论(14)

相关问答