期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    4

  • 浏览数

    132

flynn_pd
首页 > 期刊问答网 > 期刊问答 > 数学文化欣赏结课论文

4个回答 默认排序1
  • 默认排序
  • 按时间排序

david0632

已采纳
巧用现代教育技术,让生活走进数学课堂 单位:北滘镇水口小学作者:黄庆莲联系电话:26657359 巧用现代教育技术,让生活走进数学课堂摘要:数学源于生活,应用于生活,新教学理念要求教师注重渗透生活中处处有数学的观念,鼓励学生学以致用。因此文章结合教材内容和生活实际,运用多媒体教学,将信息技术融合到小学数学教学中来,同时使教师拓展知识视野,改变传统的学科科学内容,使教材“活”起来。关键字:多媒体 数学 生活《数学课程标准》明确指出:“要重视从学生的生活实践经验中学习数学和理解数学”,指出“要重视从学生熟悉的生活情境和感兴趣的事情中提供观察和操作的机会,使他们感受到数学就在身边,感受到数学的趣味和作用,对数学产生亲切感。”这一要求揭示了数学与实际生活的关系。所以数学教学内容应力求从学生熟悉的生活情境出发设计数学问题,让学生真正体验数学与生活的关系,提高解决实际问题的能力。数学源于生活,应用于生活,新教学理念要求教师注重渗透生活中处处有数学的观念,鼓励学生学以致用。因此,结合运用多媒体教学,将信息技术融合到小学数学教学中来,充分运用各种信息资源,引入时代活水,使学生的学习内容更贴近生活和现代科技,同时也可以使教师拓展知识视野,改变传统的学科科学内容,使教材“活”起来。在课堂教学中,如何让生活走进数学课堂,实现“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展”。我认为应从下面几方面着手:第一、运用多媒体技术让数学与生活紧密联系起来《数学课程标准》所提出“有价值”的数学应该与学生的现实生活密切联系的;应该充分考虑数学发展中人类的活动轨迹,贴近学生熟悉的现实生活。这样的数学课程对他们才有吸引力,才使他们产生兴趣,才有益于学生理解数学。才是“人人要学的数学”。传统的小学数学教学很大程度上把学生所学知识与实践能力及从生活中去发现数学的能力。生活是数学的归宿,也就是数学必须服务于生活,发展于生活。《数学课程标准》里提到实现“人人获得必须的数学”有多种途径,最基本的是从学生自己熟悉的生活背景中发现数学、掌握数学和运用数学,在此过程中体验数学与周围世界的联系,以及数学在社会生活中的作用和意义,感受成功,增进自信。在数学教学实践中,作为教师要善于从学生熟悉的生活情景和感兴趣的事物出发,充分运用多媒体教学,运用生活经验,让学生自主发现问题,给予观察、操作、实践探索的机会,使学生体会到数学就在身边,感受到数学的趣味和作用,这就要求我们把数学与生活紧密联系起来,不但要把生活引进课堂,而且让学生带着数学走进生活,去理解生活中的数学,去体会数学的价值。第二、利用多媒体创设生活情境,让学生在具体生动的生活情境中学习苏霍姆林斯基指出,教师在教学中如果不想方设法使学生产生情绪高昂和智力振奋的内心状态,而只是不动情感的脑力劳动,就会带来疲倦。因此,我们的教学应营造一种轻松愉快的情境,使学生乐此不疲地致力于学习内容。数学离不开生活,生活中处处有数学。在课堂教学中,以教材为蓝本,利用计算机教学软件的集直观性、多变性、知识性、趣味性于一体等特点,为学生提供生动逼真的教学情境,让学生在具体生动的生活情境中学习,从而激发学生学习数学的兴趣,充分调动学生学习的积极性和主动性,诱导学生积极思维,使其产生内在学习动机,并主动参与教学活动。心理研究表明:当学习内容和学生熟悉的生活背景越贴近,学生自觉接纳知识的程度就越高。从学生熟悉的生活背景、轻松和谐的课堂氛围入手,让学生置身于日常生活中来学习知识,让知识和日常生活交融。这样既激发了学生的求知欲,又让学生感到数学无处不在,体会到知识来源于生活,进而乐此不彼地学习。创设生活角色情境,就是让学生在学中体验生活角色的一种教学方法,对于活跃课堂气氛,提高学生学习兴趣,激发学生想象力、创造力、表现力都起着不可预估的作用。所以在日常教学中,应创设这样的情境,创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,使学生感觉到在课堂上学习就象在日常生活中遇到了数学问题一样,从而激发学生学习的兴趣,充分调动学生学习的积极性。如在“买文具”的教学中,可以运用多媒体创设这样的情境:售货员阿姨粗心地把笔记本标价牌上的小数点位置写错了,3.5元写成了0.35元,会造成什么后果? 利用这个情境,激活学生先前的生活经验,引导学生观察“橱窗”里陈列着的文具,让同桌互相说一说每一种文具的单价是几元几角几分。通过同伴之间的交流,促进每个学生去感受和理解每个文具标价牌上小数所表示的意义。又如教学“平移和旋转”,首先结合生活中具体的实例,如“缆车沿笔直的索道滑行、国旗沿着旗杆徐徐上升、直升飞机起飞时的螺旋桨运动、小风车迎风旋转等来感知平移和旋转现象。把抽象的相关的各种数学术语让学生迅速理解,既活跃了课堂气氛,又高效地完成了教学任务。第三、联系生活中的实际问题,运用多媒体教学,激起学生自主探究的欲望新课程强调人人学有价值的数学,人人学有用的数学。因此,数学学习必须加强与生活实际的联系,让学生感受到生活中处处有数学。数学只有回到生活中,才会显示其价值和魅力,学生只有回到生活中运用数学,才能真实地显现其数学学习水平。过去的数学教学往往比较重视解答现有的数学问题,即课本上已经经过处理的问题。学生只要按照学会的解题方法,一步一步去解决就可以了,不需要把所理解的数学问题内化到生活中去,解决现实中的各种问题。新课程标准更多地强调学生用数学的眼光从生活中捕捉数学问题,主动地运用数学知识分析生活中的现象,自主地解决生活中的实际问题。数学学习是与“现实”生活密切相关的,学生从现实中学习数学,再把学到的数学应用到现实中去,这样就可以通过自己的认知活动,实现数学观念的构建,促进知识结构的优化。因此,我们的数学教学应当注重理论联系实际,使问题生活化,尽可能地引入更多的具有真实意义的问题,使他们有更多的机会从周围熟悉的事物中学习和理解数学,并培养学生应用数学知识解决实际问题的能力。比如:“买文具”、“整理书”、“铺地面”、“统计”等。这些都是生活中的数学问题,初步学会运用数学的思维方式去观察、分析、解决日常生活中的问题;形成勇于探索、勇于创新的科学精神;获得适应未来社会生活和进一步发展所必需的重要数学事实和必要的应用技能。使学生在学习数学的同时体会到学有用的数学、生活中的数学。又如:生活中处处都要用到估算,要求学生估算一下卧室的面积是多少,估算一下学校操场的长和宽各是多少,鼓励学生节约用电,让学生估算一下如果一个学生一个月节约五度电,那么十个同学一个月节约几度电?全校同学呢。在教学中引导学生寻找生活中的数学问题,既可以积累知识,让学生通过如此切身的问题感受到数学的价值所在,更是培养学生探索意识和应用意识的最佳途径。而且这样也是把枯燥的知识变成了学生感兴趣的活生生的题目,使学生积极主动地投入到学习生活中,让学生发现数学就在自己身边,从而提高学生用数学思想来看待问题的能力。四、运用多媒体教学使学生获得广泛的实践活动经验为了使学生在学习数学知识的同时,能初步接触和逐渐掌握课堂中所学到的数学知识,不断增强数学意识,就必须在数学教学过程中加强实践活动,使学生有更多的机会接触生活和生产实践中的数学问题,认识现实中的问题和数学问题之间的联系和区别。让学生通过动手操作学习数学,自己主动地发现一些数学问题的解题方法或得出有关结论,教师要运用多媒体教学创设一定的情境引导并参与到学生的动手操作中去。例如:三年级下册教材除了安排了“森林旅游”、“旅游中的数学”、和“体育中的数学”3个较大的实践活动个,还在正文或练习中提供了如下的实践活动:到商店调查3种商品的价格,并做好记录;找找生活中的小数,并与同伴说说;调查自己家两个月水电费开支情况,并记录下来,通过分析数据把你的感受与同伴说一说;收集一些对称图形、图案和照片在班里展览等。让学生经历以上一系列的观察、操作、制作、调查、推理等实践活动,在合作与交流的过程中,获得良好的情感体验;获得并积累更多的数学活动的初步经验,能够运用所学知识和方法解决简单问题;感受数学在日常生活中的作用。这样让学生养成留心观察周围事物,有意识地用数学的观点去认识周围事物的习惯,并自觉把所学习的知识与现实中的事物建立联系。总之,现代教育技术呼唤着数学课堂的生命活力,恰当地选准多媒体与数学课堂教学的最佳结合点,适时适量的运用多媒体,不仅能充分调动学生的积极性,激发学生的求知欲,活跃学生的思维,拓展学生的想象力,而且能让学生通过信息技术,感受到数学与实际紧密联系。让生活与数学教学相衔接,让学生从生活中寻找数学素材,感受生活中处处有数学,教学中教师应结合生活实际,抓住典型事例,教给思考方法,让学生真正体会到数学学习的趣味性和实用性,使学生发现生活数学,喜欢数学,这样教学既便于教师的组织教学,也利于学生的操作探索。也只有做到数学与生活结合起来,才能彻底贯彻这一点,让数学学习真正地“活”起来,努力构建生活数学体系。 参考文献:《数学课程标准》

数学文化欣赏结课论文

107 评论(14)

fishz88

数学类论文感想类的比较好写,巴巴适适论文吧 全博士专业论文辅导团队,提供课程论文、毕业论文、硕士论文、博士论文,数学论文发表、数学教学论文发表
168 评论(8)

靖319

浅谈数学文化中的和合思想和合是我国传统文化的一个重要概念。“和”是平和、和谐、祥和、协调的意思。“合”是合作、对称、结合、统一的意思。和合思想认为,整个物质世界是一个和谐的整体,宇宙、自然、社会、精神各元素都处在一个和谐的优化结构中。而数学文化系统就是一个完美的和谐优化结构。数学文化中的数学发展史、数学哲学思想、数学方法、数学美育等重要内容蕴含着丰富的和合思想。其具体体现是整体系统性、平衡稳定性、有序对称性。一、整体系统性数学公理系统的相容性数学的公理化系统具有相容性、独立性和完备性。在这三项基本要求中,最主要的是相容性。相容性就是不矛盾性或和谐性,是指各公理不能互相抵触,它们推导的真命题也不能互相矛盾,公理系统的相容性是数学系统和谐的基础,也是基本要求。除了数学各分支自身要形成相容的公理系统之外,数学还要求各分支之间互相协调,不能互相抵触。有的系统之间,还形成密切的同构关系,在不同的数学系统之间,相容性是一致的。例如欧氏几何与非欧几何(罗式几何、黎曼几何)中平行公理是互否的命题,可在欧氏几何中构造非欧几何的模型,所以可以这样说只要欧氏几何无矛盾,那么非欧几何也是无矛盾的。数学运算系统的完整性数学的运算法则、运算公式、运算结论都是完整的、准确的。特别是数学的运算语言,它把文字语言、符号语言、图像语言完全融合到一个统一体中,互相印证、互相诠释、互相转化,达到了天衣无缝的完美。当扩充数系时,要建立新的理论和运算拓广原有运算和关系时,要尽量保持原有的运算、关系的一致性,如有不一致,必须作一规定,使新系统与原有系统和谐。数学推理系统的严密性在我们日常的数学活动中,常常用到反证法,在这种方法中,往往不仅要用到系统的公理和定理,而且要用到其他分支的知识。在整个推理过程中要和谐。例如古希腊三大著名问题之一化圆为方,即作一个与给定圆面积相等的正方形。要证明用圆规和直尺不能作出等面积的正方形就需要用到数“=”的超越性。在数学上的等式、解析式中出现“=”是和谐的体现。二、平衡稳定性“和合思想”认为天地自然万物处于平衡、和谐、有序的状态。各个事物、要素互依、互涵、互补,处于全面的、立体的相互作用的过程之中。而数学的平衡稳定性很好地体现了和合思想。数学发展的平衡稳定数学科学与其它学科相比,一个重要的特点就是历史的累积性、发展的平衡稳定性。也就是说重大的数学理论总是在继承和发展原有理论的基础上建立起来的,他们不仅不会推翻原有的理论,而且总是包容原有的理论。比如天文学的“地心说”被“日心说”所代替,物理学中关于光的“粒子说”被“波动说”代替,化学中的“燃素说”被“氧化说”代替等等,而数学从来没有发生过这样的情况。这正如一位数学史家H?汉科尔所说:“在大多数学科里,一代人的建筑为下一代人所拆毁,一个人的创造被另一个人所破坏,唯独数学,每一代人都在古老的大厦上添加一层楼”。数学的这一平衡稳定性,正是数学学科能不断焕发出无限活力和强大生命力根源。数学学习过程的平衡稳定人们对知识的学习过程都含有一定的认知结构。而学生学习数学知识的过程不外乎“同化—顺应—平衡”这样一个相对稳定的过程。同化就是把新的知识纳入已有的认知结构,使原有的知识体系不断得到充实丰富。顺应就是新的知识不能纳入原有的认知结构,就要对原有认知结构进行改造和提高,从而建立新的认知结构。平衡就是同化和顺应后,都有一个巩固阶段,在这一阶段对知识的理解和内化是平衡稳定的。人们对数学知识的学习正式在“同化—顺应—平衡”这样一个循环往复的过程中发展的。数学方法的平衡稳定数学方法是认识数学客体过程中某种有规律的程序和手段,使理论用于实践的中介,各种方法都和谐地存在在数学这个共同体中。比如常用的数学思维方法:观察、分析、综合、抽象、猜想、类比、归纳、演绎;还有常用的数学解题方法:比较方法、结构方法、模型方法、构造方法、化归方法、映射反演法、几何变换法、公理化方法等。这些方法,无论是在初等数学中,还是在高等数学中;无论是在几何学中,还是在代数学中,都在广泛的运用,始终处于平衡稳定状态中,不会因时间、空间、以及学科的变化发生变异。几何变换思想和方法,就是用运动和变化的观点去研究几何对象及其相互关系,探讨图形运动过程中不变的关系、不变量和变化关系、变化量,从中找出规律。在解题过程中,对图形有关部分进行变换,化不规则为规则,化一般为特殊,化不利条件为有利条件。三、有序对称性“凡物必有合”,“合”就是对称、结合、统一。整个世界不仅和谐合理,而且阴阳和合的对称。数学的有序对称美在初等数学中研究的对称性,可以描述的是一个图形、一个式子各个部分的关系,也可以描述两个图形、式子的关系。图形、式子的变换显示着数学中的对称美。图形对称可称为狭义对称,例如中心对称图形、轴对称图形、旋转对称图形是图形位置的一种对称。显示一种对称的美。在许多概念中和方法、命题、公式、法则中也存在对称性,也可称为一种对称。在数学中,许多概念都是一正一反,相辅相成,成对出现的。例如数学运算中加与减、乘与除、乘方与开方、微分与积分等,都可认为是一阴一阳的对称;减一个负数可变成加一个正数,除可以变成乘的运算,所以说它们之间又是统一有序的。在二元运算中通过交换律、结合律、分配律来反映其对称性。数学解题过程的有序结构从文化的角度审视数学解题过程它是数学策略、数学逻辑、数学方法、数学知识、数学技能与程式化的有机结合,是一个有序结构的统一体。比如解方程过程的基本步骤是:去分母、去括号、移项合并、两边同除以未知数的系数。这是一个和谐的有序结构。破坏了这个有序结构,就会发生解题障碍。从思维过程看,它是“观察———联想———转化”这样一个有序过程。观察是联想的基础,在观察中认识所给题目的特征;联想是转化的桥梁,在联想中寻找解题途径;转化是解题的手段,在转化中确定解题方案,从而最终解决问题。数学无论是从整体和局部,形式和内容,还是结果和过程都体现着和合思想的精神和内涵。我们用“和合思想”重新认识数学,发挥数学文化在教学中的教育功能,就能有效地培养学生科学素养和文化素养。参考文献:[1]齐民友数学文化[M]长沙:湖南教育出版社,[2]张维忠数学文化与数学课程[M]上海:上海教育出版社,[3]郑毓信数学文化学[M]成都:四川教育出版社,[4]李文林数学史教程[M]高教出版社
118 评论(8)

手机用户

数学作为一种文化现象,早已是人们的常识历史地看,古希腊和文艺复兴时期的文化名人,往往本身就是数学家进入21世纪之后,数学文化的研究更加深入一个重要的标志是数学文化走进中小学课堂,渗入实际数学教学,努力使学生在学习数学过程中真正受到文化感染,产生文化共鸣,体会数学的文化品位,体察社会文化和数学文化之间的互动中国在春秋战国时期也有百家争鸣的学术风气,但是没有实行古希腊统治者之间的民主政治,而是实行君王统治制度春秋战国时期,也是知识分子自由表达见解的黄金年代当时的思想家和数学家,主要目标是帮助君王统治臣民,管理国家因此,中国的古代数学,多半以"管理数学"的形式出现,目的是为了丈量田亩,兴修水利,分配劳力,计算税收,运输粮食等国家管理的实用目标理性探讨在这里退居其次因此,从文化意义上看,中国数学可以说是"管理数学"和"木匠数学",存在的形式则是官方的文书古希腊的文化时尚,是追求精神上享受,以获得对大自然的理解为最高目标因此,"对顶角相等"这样的命题,在《几何原本》里列入命题15,借助公理3(等量减等量,其差相等)给予证明在中国的数学文化里,不可能给这样的直观命题留下位置 同样,中国数学强调实用的管理数学,却在算法上得到了长足的发展负数的运用,解方程的开根法,以及杨辉(贾宪)三角,祖冲之的圆周率计算,天元术那样的精致计算课题,也只能在中国诞生,而为古希腊文明所轻视 我们应当充分重视中国传统数学中的实用与算法的传统,同时又必须吸收人类一切有益的数学文化创造,包括古希腊的文化传统当进入21世纪的时候,我们作为地球村的村民,一定要溶入世界数学文化,将民族性和世界性有机地结合起来揭示数学文化内涵,走出数学孤立主义的阴影。数学的内涵,包括用数学的观点观察现实,构造数学模型,学习数学的语言,图表,符号表示,进行数学交流通过理性思维,培养严谨素质,追求创新精神,欣赏数学之美半个多世纪以前,著名数学家柯朗在名著《数学是什么》的序言中这样写道:"今天,数学教育的传统地位陷入严重的危机数学教学有时竟变成一种空洞的解题训练数学研究已出现一种过分专门化和过于强调抽象的趋势,而忽视了数学的应用以及与其他领域的联系教师学生和一般受过教育的人都要求有一个建设性的改造,其目的是要真正理解数学是一个有机整体,是科学思考与行动的基础" 2002年8月20日,丘成桐接受《东方时空》的采访时说:"我把《史记》当作歌剧来欣赏","由于我重视历史,而历史是宏观的,所以我在看数学问题时常常采取宏观的观点,和别人的看法不一样" 这是一位数学大家的数学文化阐述 《文汇报》2002年8月21日摘要刊出钱伟长的文章《哥丁根学派的追求》,其中提到:"这使我明白了:数学本身很美,然而不要被它迷了路应用数学的任务是解决实际问题,不是去完善许多数学方法,我们是以解决实际问题为己任的从这一观点上讲,我们应该是解决实际问题的优秀'屠夫',而不是制刀的'刀匠',更不是那种一辈子欣赏自己的刀多么锋利而不去解决实际问题的刀匠"这是一个力学家的数学文化观和所有文化现象一样,数学文化直接支配着人们的行动孤立主义的数学文化,一方面拒人于千里之外,使人望数学而生畏;另一方面,又孤芳自赏,自言自语,令人把数学家当成"怪人"学校里的数学,原本是青少年喜爱的学科,却成为过滤的"筛子",打人的"棒子"优秀的数学文化,会是美丽动人的数学王后,得心应手的仆人,聪明伶俐的宠物伴随着先进的数学文化,数学教学会变得生气勃勃,有血有肉,光彩照人多侧面地开展数学文化研究谈到数学文化,往往会联想到数学史确实,宏观地观察数学,从历史上考察数学的进步,确实是揭示数学文化层面的重要途径但是,除了这种宏观的历史考察之外,还应该有微观的一面,即从具体的数学概念,数学方法,数学思想中揭示数学的文化底蕴以下将阐述一些新视角,力求多侧面地展现数学文化 数学和文学数学和文学的思考方法往往是相通的举例来说,中学课程里有"对称",文学中则有"对仗"对称是一种变换,变过去了却有些性质保持不变轴对称,即是依对称轴对折,图形的形状和大小都保持不变那么对仗是什么 无非是上联变成下联,但是字词句的某些特性不变王维诗云:"明月松间照,清泉石上流"这里,明月对清泉,都是自然景物,没有变形容词"明"对"清",名词"月"对"泉",词性不变其余各词均如此变化中的不变性质,在文化中,文学中,数学中,都广泛存在着数学中的"对偶理论",拓扑学的变与不变,都是这种思想的体现文学意境也有和数学观念相通的地方徐利治先生早就指出:"孤帆远影碧空尽",正是极限概念的意境欧氏几何和中国古代的时空观初唐诗人陈子昂有句云:"前不见古人,后不见来者,念天地之悠悠,独怆然而涕下"这是时间和三维欧几里得空间的文学描述在陈子昂看来,时间是两头无限的,以他自己为原点,恰可比喻为一条直线天是平面,地是平面,人类生活在这悠远而空旷的时空里,不禁感慨万千数学正是把这种人生感受精确化,形式化诗人的想象可以补充我们的数学理解 数学与语言语言是文化的载体和外壳数学的一种文化表现形式,就是把数学溶入语言之中"不管三七二十一"涉及乘法口诀,"三下二除五就把它解决了"则是算盘口诀再如"万无一失",在中国语言里比喻"有绝对把握",但是,这句成语可以联系"小概率事件"进行思考"十万有一失"在航天器的零件中也是不允许的此外,"指数爆炸""直线上升"等等已经进入日常语言它们的含义可与事物的复杂性相联系(计算复杂性问题),正是所需要研究的"事业坐标""人生轨迹"也已经是人们耳熟能详的词语 数学的宏观和微观认识宏观和微观是从物理学借用过来的,后来变成一种常识性的名词以函数为例,初中和高中的函数概念有变量说和对应说之分,其实是宏观描述和微观刻画的区别初中的变量说,实际上是宏观观察,主要考察它的变化趋势和性态高中的对应则是微观的分析在分段函数的端点处,函数值在这一段,还是下一段,差一点都不行政治上有全局和局部,物理上有牛顿力学与量子力学,电影中有全景和细部,国画中有泼墨山水画和工笔花鸟画,其道理都是一样的是否要从这样的观点考察函数呢 数学和美学"1/2+1/3=2/5 "是不是和谐美 二次方程的求根公式美不美 这涉及到美学观三角函数课堂上应该提到音乐,立体几何课总得说说绘画,如何把立体的图形画在平面上欣赏艾舍尔的画,计算机画出的分形图,也是数学美的表现
218 评论(9)

相关问答