hzx030905
黄金分割 对于“黄金分割”大家应该都不陌生吧!由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。也许,618在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,618还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量?一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与618紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。古希腊帕提侬神庙是举世闻名的完美建筑,它的高和宽的比是618。建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮.连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目.有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是618…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:618……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。黄金分割与人的关系相当密切。地球表面的纬度范围是0——90°,对其进行黄金分割,则38°——62°正是地球的黄金地带。无论从平均气温、年日照时数、年降水量、相对湿度等方面都是具备适于人类生活的最佳地区。说来也巧,这一地区几乎囊括了世界上所有的发达国家。多去观察生活,你就会发现生活中奇妙的数学!数字中国有一个成语——“顾名思义”。很多事物都能顾名思义,但是也有例外。比如,阿拉伯数字。很多人一听到阿拉伯数字,就会认为是阿拉伯人发明的。但事实证明,不是。 阿拉伯数字1、2、3、4、5、6、7、8、9。0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。其实,阿拉伯数字最初出自印度人之手,是他们的祖先在生产实践中逐步创造出来的。 公元前3000年,印度河流域居民的数字就已经比较进步,并采用了十进位制的计算法。到吠陀时代(公元前1400-公元前543年),雅利安人已意识到数码在生产活动和日常生活中的作用,创造了一些简单的、不完全的数字。公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”,叫“舜若”(shunya),表示方式是一个黑点“●”,后来衍变成“0”。这样,一套完整的数字便产生了。这就是古代印度人民对世界文化的巨大贡献。 印度数字首先传到斯里兰卡、缅甸、柬埔寨等国。7-8世纪,随着地跨亚、非、欧三洲的阿拉伯帝国的崛起,阿拉伯人如饥似渴地吸取古希腊、罗马、印度等国的先进文化,大量翻译其科学著作。771年,印度天文学家、旅行家毛卡访问阿拉伯帝国阿拨斯王朝(750-1258年)的首都巴格达,将随身携带的一部印度天文学著作《西德罕塔》献给了当时的哈里发曼苏尔(757-775),曼苏尔令翻译成阿拉伯文,取名为《信德欣德》。此书中有大量的数字,因此称“印度数字”,原意即为“从印度来的”。 阿拉伯数学家花拉子密(约780-850)和海伯什等首先接受了印度数字,并在天文表中运用。他们放弃了自己的28个字母,在实践中加以修改完善,并毫无保留地把它介绍给西方。9世纪初,花拉子密发表《印度计数算法》,阐述了印度数字及应用方法。 印度数字取代了冗长笨拙的罗马数字,在欧洲传播,遭到一些基督教徒的反对,但实践证明优于罗马数字。1202年意大利雷俄那多所发行的《计算之书》,标志着欧洲使用印度数字的开始。该书共15章,开章说:“印度九个数字是:‘9、8、7、6、5、4、3、2、1’,用这九个数字及阿拉伯人称作sifr(零)的记号‘0’,任何数都可以表示出来。” 14世纪时中国的印刷术传到欧洲,更加速了印度数字在欧洲的推广应用,逐渐为欧洲人所采用。 西方人接受了经阿拉伯人传来的印度数字,但忘却了其创始祖,称之为阿拉伯数字。数学很有用学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。 从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.关于“0”0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 已解决问题收藏 转载到QQ空间 有关数学文化方面的论文,3000字左右200[ 标签:文化 论文,数学,论文 ] 语言性论文,可以是数学的历史,发展,以及数学与其他领域方面的关系和影响 匿名 回答:3 人气:11 解决时间:2008-11-17 19:53 满意答案数学的文化价值 一、数学是哲学思考的重要基础 数学在科学、文化中的地位,也使得它成为哲学思考的重要基础。历史上哲学领域内许多重要论争,常常牵涉到有关对数学的一些根本问题的认识。我们思考这些问题,有助于正确认识数学,正确理解哲学中有关的争论。 (一)数学——-根源于实践 数学的外在表现,或多或少人的智力活动相联系。因此在数学和实践的关系上,历来有人主张数学是“人的精神的自由创造”,否定数学来源于实践其实,数学的一切发展都不同程度地归结为实际的需要。从我国殷代的甲骨文中,就可以看到那时我们的祖先已经会使用十进制计数方法他们为适应农业的需要,将“十干”和“十二支”配成六十甲子,用以记年、月、日,几千年的历史说明这种日历的计算方法是有效的。同样,由于商业和债务的计算,古代的巴比伦人己经有了乘法表、倒数表,并积累了许多属于初等代数范畴的资料。在埃及,由于尼罗河泛滥后重新测量土地的需要,积累了大量计算面积的几何知识。后来随着社会生产的发展,特别是为适应农业耕种与航海需要而产生的天文测量,逐渐形成了初等数学,包括当今我们在中学里学习到的大部分数学知识。再后来由于蒸汽机等机械的发明而引起的工业革命,需要对运动特别是变速运动作更精细的研究,以及大量力学问题出现,促使微积分在长期的酝酿后应运而生。20世纪以来近代科学技术的飞速发展,使数学进入一个空前繁荣时期。在这个时期数学出现了许多新的分支:计算数学,信息论,控制论,分形几何等等。总之,实践的需要是数学发展的最根本的推动力。 数学的抽象性往往被人所误解。有些人认为数学的公理、公设、定理仅仅是数学家头脑思维的产物。数学家靠一张纸、一支笔工作,和实际没有什么联系。 其实,即使就最早以公理化体系面世的欧的几里德几何而言,实际事物的几何直观和实践中人们发展的现象,尽管不合乎数学家公理化体系的各式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他伯头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会成为无源之水,无本之木。 其实,即使就最早以公理化体系面世的欧几里德几何而言,实际事物的几何直观和实践中人们发现的现象,尽管不合乎数学家公理化体系的程式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他的头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受过严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会变成无源之水,无本之木。 但是,数学理性思维的特点,使它不会满足于仅研究现实的数量关系和空间形式,它还努力探索一切可能的数量关系和空间形式。在古希腊时期,数学家就超越了在现实有限尺度精度内度量线段的方法,觉察到了无公度量线段的存在,即无理数的存在。这其实是数学中最困难的概念之一—连续性、无限性的问题。直到两千年以后,同样的问题导致极限理论的深入研究,大大地推动了数学的发展。试想今天如果还没有实数的概念,我们将面临怎样的处境。这时人们无法度量正方形对角线的长度,也不会解一元二次方程:至于极限理论与微积分学更不可能建立即使人们可以像牛顿那样应用微积分,但是在判断结论的真实性时会感到无所适从。在这种状况下,科学技术还能走多远呢?又如在欧几里德几何产生时,人们就对其中一个公设的独立性产生怀疑。到19世纪上半叶,数学家改变这个公设,得到了另一种可能的几何一一非欧几里德几何。这种几何的创立者表现了极大的勇气,因为这种几何得出的结论从“常理”来说是非常“荒唐”的。例如“三角形的面积不会超过某一个正数”。现实世界似乎没有这种几何的容身之地。但是过了近一百年,在物理学家爱因斯坦发现的相对论中,非欧几里德几何却是最合适的几何。再如,20世纪30年代哥德尔得到了数学结论不可判别性的结果,其中的某些概念非常抽象,近几十年却在算法语言的分析中找到了应用。实际上,许多数学在一些领域或一些问题中的应用,一旦实践推动了数学,数学本身就会不可避免地获得了一种动力,使之有可能超出直接应用的界限。而数学的这种发展,最终也会回到实践中去。 总之,我们应该大力提倡研究和当前实际应用有直接联系的数学课题,特别是现实经济建设中的数学问题。但是我们也应该在纯粹科学和应用科学之间建立有机的联系,建立抽象的共性和丰富多彩的个性之间的平衡,以此来推动整个科学协调地发展。 (二)数学—充满了辩证法由于数学严密性的特点,很少有人怀疑数学结论的正确性。相反,数学的结论往往成为真理的一种典范。例如人们常常用“像一加一等于二那么确定”来表示结论不容置疑。在我们的中小学的教学中,数学更是只准模仿、演练、背诵。数学真的是万古不变的绝对真理吗? 事实上,数学结论的真理性是相对的即使像1+1=2这样简单的公式,也有它不成立的地方。例如在布尔代数中,1+1=0!而布尔代数在电子线路中有广泛的应用。欧几里德几何在我们的日常生活中总是正确的,但在研究天体某些问题或速度很快的粒子运动时非欧几何却是适宜的。数学其实是非常多样化的,它的研究范围也随着新问题的出现而不断扩大。如同一切科学一样,数学家们如果死守着前辈的思想、方法、结论不放,数学科学就不会进步。把数学的严密性和公理化体系看作一种“教条”是错误的,更不能像封建时代的文人对待孔夫子说的话:“真理”已经包含在圣人说过的话里,后人只能对其作诠释。数学发展的历史可以证明,正是数学家特别是年轻数学家的创新精神,敢于向守旧的思想挑战,数学的面貌才得以不断地更新,数学才成长为今天这样一门蓬勃发展、富有朝气的学科。 数学的公理化体系从来也不是不容怀疑、不容变化的“绝对真理”欧几里德的几何体系是最早出现的数学公理化体系,但从一开始就有人怀疑其中的第五公设不是独立的,即该公设可以从公理体系的其他部分推出。两千多年来人们一直在寻找答案,终于在19世纪由此发现了非欧几何。虽然人们长时期受到欧几里德几何的束缚,但是最终人们还是接受了不同的几何公理体系。如果历史上某些数学家多一点敢于向旧体系挑战的革新精神,非欧几何也许还可能早几百年出现 数学公理化体系反映了内部逻辑严密性的要求。在一个学科领域内,当有关的知识积累到一定程度后,理论就会要求把一堆看来散乱的结果以某种体系的形式表现出来。这就需要对己有的事实再认识、再审视、再思索,创造新概念、新方法,尽可能地使理论能包括最一般、最新发现的规律。这实在是一个艰苦的理论创新过程。数学公理化也一样,它表示数学理论已经发展到了一个成熟的阶段,但并不是认识一劳永逸的终结。现有的认识可能被今后更深刻的认识所代替,现有的公理也可能被今后更一般化、包含更多事实的公理体系所代替。数学就在不断地更新过程中得到发展。 有种看法以为,应用数学就是把熟诵的数学结论套到实际问题上去,以为中小学的教学就是教给学生这些万古不变的教条。其实数学的应用极充满挑战性,一方面不但需要深切地认识实际问题本身,另一方面要求掌握相关数学知识的真谛,更重要的是要求能创造性地把两者结合起来。 就数学的内容来说,数学充满了辩证法。在初等数学发展时期,占统治地位的是形而上学。在该时期的数学家或其他科学家看来,世界由僵硬的、不变的东西组成。与此相适应,那时数学研究的对象是常量,即不变的量。笛卡尔的变数是数学中的转折点,他把初等数学中完全不同的两个领域一一几何和代数结合起来,建立了解析几何这个框架具备了表现运动和变化的特性,辩证法因此进入了数学。在此后不久产生的微积分抛弃了把初等数学的结论作为永恒真理的观点,常常做出相反的判断,提出一些在初等数学的代表人物看来完全不可理解的命题。数学走到了这样一个领域,在那里即使很简单的关系,都采取了完全辩证的形式,迫使数学家们不自觉又不自愿地转变为辩证数学家。在数学研究的对象中,充满了矛盾的对立面:曲线和直线,无限和有限,微分和积分,偶然和必然,无穷大和无穷小,多项式和无穷级数,正因为如此,马克思主义经典作家在有关辩证法的论述中经常提到数学。我们学一点数学,一定会对体会辩证法有所帮助。 
(一) 农业技术的萌芽时期 新石器时代(距今约10000--4000年以前)中国农业大约起源于一万年前。它是在采集和渔猎经济中逐步发展起来的。 (二) 农业技术的初步形成时期 夏、商、周(约公元前2100--公元前771年)这一时期,中国发明了金属冶炼技术,青铜农具开始应用于农业生产。水利工程开始兴建。 (三) 精耕细作的发生时期 春秋战国(公元前770--公元221年)春秋战国是中国社会大变革和科技文化大发展时期。炼铁技术的发明标志着新的生产力登上了历史舞台,铁农具和畜力的利用,推动了农业生产的大发展。 (四) 北方旱地精耕细作技术的形成时期 秦、汉至南北朝(公元前221--公元589年)这是中国北方地区旱地农业技术成熟时期。耕、耙、耱配套技术形成。多种大型复杂的农具先后发明的运用。 (五) 南方水田精耕细作的形成时期 隋、唐、宋、元(公元581--公元1368年)经济重心从北方转移到南方。南方水田技术配套技术形成。水田专用农具发明与普及。棉花在中国逐渐推广。出现众多农书。土地利用方式增多。南北方农业同时获得大发展。 (六) 精耕细作的深入发展时期 明朝至清前中期(公元1368--公元1840年)这一时期中国普遍出现人多地少的矛盾,农业生产向进一步精耕细作化发展。美洲新大陆的许多作物被引进中国,对中国的农作物结构发生重大影响。多种经营和多熟种植成为农业生产的主要方式。
1.古代的农业经济:农业发展的表现,一般要从农具改进与农作物推广、水利工程的兴修、耕作技术的进步、垦田面积的增加、粮食产量的提高、政府收入增多、国家人口增殖等方面来考察。发展的原因主要是看历代政府对农业发展的重视程度、农业政策、土地制度和赋税制度等。 认识:我国古代农业在发展的过程中,呈现出以下一些特点。 ①农产品化程度逐渐提高。唐代以前,农产品商品化趋势并不明显。唐朝时期茶叶已成为普遍的饮料,茶叶成为生活的必需品,唐朝中期,政府开始征收茶税,这是农产品商品化之典型。元朝时,棉花种植遍及南方,明代已推向江北。明清时期,棉花、蚕桑、茶叶、烟草、花卉、油料、药材等经济作物的种植面积都扩大了,还形成了一些专业生产区域。农业商品化直接促进了商品经济的发展。 ②耕地面积和粮食总产量不断增长。由于历代封建统治者重视农业,自秦汉至明清,耕地面积呈不断扩大趋势。西汉时,江南、西域和西南的土地都得到一定的开发。隋唐时,江南的土地资源进一步被利用,适于种植高产稻的圩田很普遍,开垦山地的现象也很多。明清时,连不适宜生长稻、麦的贫瘠沙洼地也被利用起来。耕地面积的不断扩展,使粮食总产量大幅增加。 ③农作物品种不断增多,生产工具和生产技术前期发展,后期停滞。“五谷”在商周时期已经种植。明代引进了玉米和番薯。清代前期种植经济作物已很普遍。从秦汉到隋唐,农业生产工具与生产技术不断发展。钢刃铁农具在隋唐时期已普遍使用。隋唐出现筒车和曲辕犁。农业生产工具在宋代以后无大改进,加之农业生产商品化趋势不断加强,这预示着封建生产力已经走到尽头,商品经济的发展必将促进新的生产关系出现。 ④历代统治者都十分重视农业,“农本”和“以农立国”思想是历代统治者一贯的指导思想。从战国的商鞅变法到清朝统治者,都在推行“重农抑商”政策,这种做法,是中国古代封建自然经济和专制主义中央集权制度发展的产物。它的实行,在封建社会初期,对国家安定、新兴地主阶级政权的巩固和社会经济的发展起过一定积极作用,应该给予肯定;但该政策把工商业和农业对立起来,进行压制,其结果必然是阻碍商品经济的发展,使农业长期停止在自然经济的低水平上。其弊端在明清时期更加严重,它阻碍了资本主义萌芽的成长,是中国落后于世界的重要原因之一。 ⑤赋税制度与土地制度相适应,随土地制度的变化而变化。中国古代赋税制度的变化呈现出两种趋势:一是以人丁为主逐渐变为以土地为主,说明封建国家对农民的人身控制逐渐松弛;一是纳税物品由实物和力役为主逐渐变为货币地租,说明我国商品经济在不断的发展。 2.古代的手工业经济:中国古代手工业的重要部门主要有纺织业、冶金业、陶瓷业、造船业、造纸业等。每一部门的发展包括产地、规模、技术水平、产品数量与质量、产品销路等方面。 认识:我国古代手工业在发展的过程中,呈现出以下一些特点。 ①工业部门不断增加。奴隶社会就有了冶铜工业(即青铜工业),封建社会增加了冶铁、制糖、棉纺织业等部门。工业部门的不断增加,有的是在生产过程中产生的新行业,有的则是由某个行业演变分化成的新的部门。例如在纺织工业的发展过程中,先有丝织业,后有棉纺织业;其后棉纺织业日益发展,又分为轧花、纺纱、织布、印染等部门。同样,在矿冶铸造工业方面,也日益分化成为采矿、冶炼、铸造等工业部门。另外,某个工业部门的创立或发展,往往会带动其他有关部门的创立或发展。例如中国冶铁工业的兴起,使农具制造和兵器制造成为独立的工业部门。 ②工业技术的不断进步与劳动分工的不断发展。任何一个工业部门,不论其创立的早晚,一旦创立以后,它的生产技术都是在不断进步的。以冶铸技术的发展为例:商朝时有了青铜铸造技术,春秋战国时期发明了铸铁柔化处理技术,唐朝的铸造业已普遍采用切削、抛光、焊接等工艺。 ③手工业生产规模的扩大与工场手工业的出现。从经营的方式来说,其发展的一般趋势是由家庭手工业到作坊工业,再到工场手工业。到了封建社会,工业生产的规模有所扩大,劳动分工也渐趋细致。尤其在明代中叶以后,城市工业生产中产生了资本主义萌芽,出现了工场手工业的经营方式。在这种手工业工场中,一般雇佣较多的工匠,在细致的劳动分工下从事生产,使产品的制造进一步的发展。如在江南地区的矿冶工业、纺织工业、制瓷工业等部门的工业生产中,某些手工业工场具有比较复杂的生产设备,拥有大量的雇佣劳动者。他们生产出来的商品数量很大。 ④经济重心南移与工业分布的相应变化。中国古代的经济重心,起初在北方,以后逐步移至南方。大约到南宋时期,我国的经济重心完成了从北方到南方的变迁。随着经济重心的转移,有不少工业生产部门、工业制品的主要产地,也从北方逐渐移到南方。这种情况,在中国古代丝织业地区分布的变化中表现得最为明显。 需要说明的是,尽管中国古代的手工业很发达,在世界上曾经居于领先地位,但由于统治者推行重农抑商政策,手工业始终为农业文明经济的发展服务而处于从属地位,虽然在明清时期资本主义生产关系的萌芽产生并有了缓慢发展,但又由于封建生产关系的阻碍,始终没有进入手工工场时代。 3.古代的商业经济:商业贸易作为社会经济现象的一个方面,与工农业生产有着不可分割的联系。它是工农业生产发展的产物,它的产生和发展又进一步促进了工农业生产的进步。历史上的商业贸易现象包括商品经济的发展、货币的发展、城市的发展、国内贸易和国际贸易的发展等方面。 认识:我国古代商业经济在发展的过程中,呈现出以下一些特点。 ①城市逐步增多,商业性和工业性逐步加强。奴隶社会和封建社会初期,城市不多,一般以都城为主。隋唐两朝,长安和洛阳是全国的政治、文化中心,也是全国的商业大都会;在长江流域还出现了以扬州和成都为中心的商业都市。明朝时全国出现了数十座较大的商贸城市,江浙地区以工商业著称的市镇蓬勃兴起。 ②从北宋起,我国的小商品经济不断发展,对当时的社会产生了深远的影响。明朝时,商品经济出现了空前活跃的局面。大量农产品、手工业品投入市场,品种达到两百多种。区域间长途贩运贸易发展很快。商品经济的发展一方面刺激了农业、手工业和城市的发展,一方面又对自然经济起了破坏作用,同时也是对传统的重农抑商观念的挑战。在商品经济繁荣的明朝中后期的江南一些城市,出现了资本主义生产关系的萌芽。随着城市商品经济的发展,市民的生活和观念也逐渐发生变化。 ③明前期以前对外贸易兴盛,此后衰落。对外贸易是在农业、手工业、城市商业发展的基础上产生的。它受到交通运输状况的制约,同时与统治阶级的对外政策有关。汉朝以丝绸之路为主要路线的陆路贸易开始发展起来。通过丝绸之路,中国的丝和丝织品运到中亚,再转运到西亚和欧洲,开辟了中西贸易的新纪元。唐朝陆路边境贸易和水路贸易都得到发展。唐朝和亚洲各国都有直接贸易往来,同朝鲜、日本、印度等国水路贸易相当频繁,中西贸易继续发展,中国的丝绸、瓷器、纸张等远销中亚、非洲和欧洲国家。宋元时期海外贸易兴盛。明朝前期郑和七次下西洋,与亚非30多个国家和地区进行友好贸易,最远到达东非海岸和红海沿岸地区,扩大了我国和亚非各国的经济交流和友好关系。从明朝中后期起,由于倭寇入侵,我国政府实行闭关政策,多次下令禁止海外贸易,只开放广州一地同外国通商,阻碍了对外的经济文化交流,妨碍了对外国先进科学技术的吸收,拉大了我国经济、科技与西方科技、经济的差距。 4.资本主义萌芽的产生和缓慢发展:资本主义萌芽产生于明朝中后期,清朝有了缓慢发展。 认识:资本主义萌芽的产生和发展,是生产力和商品经济的发展的必然结果,它的产生说明,在中国封建社会产生了新的生产关系,是中国封建社会衰落的重要表现,对明清政府政治经济的发展,对反封建的民主思想的产生都有重要的意义。但落后的封建生产关系严重阻碍着它的成长、发展,说明封建生产关系不能容纳新的生产关系。 5.古代中国的赋税制度和有关经济政策:主要包括两汉时期的编户齐民制度、隋唐时期的租庸调制、唐朝中期的两税法、北宋中期的方田均税法、明朝的一条鞭法和清朝的摊丁入亩制度等内容。自战国时期我国就开始实施重农抑商政策,直至清朝末年;自明朝中期我国开始实施海禁政策,直至鸦片战争。 认识:中国古代赋役制度呈现的趋势是,由以人丁为主的征税标准到以土地财产为主的征税标准,直至取消人头税(分别以两税法和摊丁入亩为标志);由赋役分征到赋役合征,名目和手续的简化,由实物、劳役地租到货币地租(以一条鞭法为标志)。这种演变的趋势说明,随着历史的发展和进步,封建国家对农民的人身控制松弛;用银两收税则是封建社会后期商品经济活跃及资本主义萌芽产生的反映。 重农抑商政策的评价:封建社会初期,对促进社会经济的发展,巩固新兴地主政权,起了积极的作用。明清时期,重农抑商政策的消极作用成了主要方面。明朝中后期,生产力提高,商品经济空前活跃,资本主义萌芽已经出现。在这样的形势下,统治者把商业和农业对立起来,采取各种措施,极力压抑和束缚资本主义萌芽的发展。这种做法,违反了经济发展的客观规律,导致了萌芽的国家的贫穷落后。 明清时期的海禁政策的影响:海禁政策逐渐发展为闭关锁国政策,导致了以后中国航海事业的衰落,沿海地区商品经济和资本主义的萌芽受到阻碍,中外经济文化的交流中断,是近代中国科技文化落后,社会思想意识封建、保守、落后的主要根源。