666666赵慧慧
地质雷达在水利工程质量检测中的应用1 前言 地质雷达作为近十余年来发展起来的地球物理高新技术方法,以其分辨率高、定位准确、快速经济、灵活方便、剖面直观、实时图象显示等优点,备受广大工程技术人员的青睐。现已成功地应用于岩土工程勘察、工程质量无损检测、水文地质调查、矿产资源研究、生态环境检测、城市地下管网普查、文物及考古探测等众多领域,取得了显著的探测效果和社会经济效益,并在工程实践中不断完善和提高,必将在工程探测领域发挥着愈来愈重要的作用。而地质雷达技术用于堤防隐患的探测尚属初步阶段,通过广大物探技术人员的共同努力,达到了解和掌握不同隐患类型在雷达图像上的反映特征,在不断总结探测经验的基础上,提高异常的判断能力和精度,较确切地推定堤防工程隐患的性质和位置,以便指导有关管理单位加强堤防工程重点部位的维护和防范,提高和巩固堤防工程的运行周期和防洪能力。本文以永定河堤防工程护砌质量检测为实例,说明地质雷达技术在堤防工程探测中的应用情况,以此与同行进行切磋,推动堤防工程探测技术的发展,不妥之处,敬请批评指正。2 基本原理地质雷达与探空雷达相似,利用高频电磁波(主频为数十数百乃至数千兆赫)以宽频带短脉冲的形式,由地面通过发射天线(T)向地下发射,当它遇到地下地质体或介质分界面时发生反射,并返回地面,被放置在地表的接收天线(R)接收,并由主机记录下来,形成雷达剖面图。由于电磁波在介质中传播时,其路径、电磁波场强度以及波形将随所通过介质的电磁特性及其几何形态而发生变化。因此,根据接收到的电磁波特征,既波的旅行时间(亦称双程走时)、幅度、频率和波形等,通过雷达图像的处理和分析,可确定地下界面或目标体的空间位置或结构特征。雷达波(电磁波)在界面上的反射和透射遵循Snell定律。实际观测时,由于发射天线与接收天线的距离很近,所以其电磁场方向通常垂直于入射平面,并近似看作法向入射,反射脉冲信号的强度,与界面的反射系数和穿透介质的衰减系数有关,主要取决于周围介质与反射目的体的电导率和介电常数,对于以位移电流为主的介质,既大多数岩石介质属非磁性、非导电介质,常常满足σ/ωε<<1,于是衰减系数(β)的近似值为:既衰减系数与电导率(σ)及磁导率(μ)的平方根成正比,与介电常数(ε)的平方根成反比。而界面的反射系数为:式中Z为波阻抗,其表达式为:显然,电磁波在地层中的波阻抗值取决于地层特性参数和电磁波的频率。由此可见,电磁波的频率(ω=2πf)越高,波阻抗越大。对于雷达波常用频率范围(25~1000MHz),一般认为σ<<ωε,因而反射系数r可简写成:上式表明反射系数r主要取决于上下层介电常数差异。应用雷达记录的双程反射时间可以求得目的层的深度H:式中:t为目的层雷达波的反射时间;c为雷达波在真空中的传播速度(3m/ns);εr为目的层以上介质相对介电常数均值。3 工程概况北京市界内永定河左、右堤防于清朝乾隆年间修筑,后经数次维修和加固形成现有规模,主体为梯形,顶宽约10m,可见堤高约5~6m,堤内坡坡度为1:5~1:0,外坡相对较缓为1: 0~1: 5。堤身为人工堆积,主要由粉细砂(中下游段)、卵砾石(上游段)组成。介质构成复杂多变,分布不均,且处于包气带中,极为干燥。堤基为第四系全新统地层,岩性以粉细砂为主,下游段出现黑色淤泥质粘土夹层,层厚约7~0m。地下水位埋深(自地表计):卢沟桥附近约0m,至下游逐渐变浅,达省/市界附近(石佛寺)一带约0m。永定河卢沟桥下游至省/市界左、右堤防共划定险工段12处23段,分布在左堤约60Km和右堤约30Km范围内,其险工段内坡为浆砌石(厚约40cm——原设计标准)结合铅丝石笼构成的护砌,并于1964~1989年间营建,浆砌石护坡除可见堤身部分露出外,其余部分与铅丝石笼水平护底均埋于河滩滩地以下,一般为0~0m,外铺0m的铅丝石笼护底。这些险工段在历史上均有决口或抢险加固的记载。为满足北京市对永定河防洪设计的需要,保证该堤防渡汛万无一失,故进行地球物理勘探工作,以检测堤防工程的护砌质量,便于99年6月份之前进行加固处理。4 测试技术及资料处理为判断险工段堤内坡护险浆砌石质量的优劣,沿内坡坡脚布置一条雷达探测剖面,并按其走向连续测试。外业施测使用瑞典MALA地质仪器有限公司生产的RAMAC/GPR地质雷达系统,天线的中心频率为250MHz,收发天线的间距为6m。实测采用剖面法,且收发天线方向与测线方向平行。记录点距为2m,采样频率为3893MHz,单一记录迹线的采样点数为512,迭加次数为16,记录时窗为180ns,若取堤身土体的雷达波速为08~10m/ns,表层浆砌石的雷达波速为10~12m/ns,综合考虑该地层剖面特征,选取雷达波速中值为10m/ns,则此时该雷达系统的最小纵向分辨率为8~10cm。雷达资料的数据处理与地震反射法勘探数据处理基本相同,主要有:①滤波及时频变换处理;②自动时变增益或控制增益处理;③多次重复测量平均处理;④速度分析及雷达合成处理等,旨在优化数据资料,突出目的体、最大限度地减少外界干扰,为进一步解释提供清晰可辨的图像。处理后的雷达剖面图和地震反射的时间剖面图相似,可依据该图进行地质解释。5 成果分析地质雷达资料的地质解释是地质雷达探测的目的。由数据处理后的雷达图像,全面客观地分析各种雷达波组的特征(如波形、频率、强度等),尤其是反射波的波形及强度特征,通过同相轴的追踪,确定波组的地质意义,构制地质——地球物理解释模型,依据剖面解释获得整个测区的最终成果图。地质雷达资料反映的是地下地层的电磁特性(介电常数及电导率)的分布情况,要把地下介质的电磁特性分布转化为地质分布,必须把地质、钻探、地质雷达这三个方面的资料有机结合起来,建立测区的地质——地球物理模型,才能获得正确的地下地质结构模式。雷达资料的地质解释步骤一般为:⑴ 反射层拾取根据勘探孔与雷达图像的对比分析,建立各种地层的反射波组特征,而识别反射波组的标志为同相性、相似性与波形特征等。⑵ 时间剖面的解释在充分掌握区域地质资料,了解测区所处的地质结构背景的基础上,研究重要波组的特征及其相互关系,掌握重要波组的地质结构特征,其中要重点研究特征波的同相轴的变化趋势。特征波是指强振幅、能长距离连续追踪、波形稳定的反射波。同时还应分析时间剖面上的常见特殊波(如绕射波和断面波等),解释同相轴不连续带的原因等。下部架空时的图像,该剖面第三反射同相轴自剖面点4m处断开,形成“背斜”状的强反射层,此现象延续到剖面点8m处,此段浆砌石与下部土体分离导致架空,其范围与已知情况吻合。 通过雷达测试成果的地质解释共圈定出73处浆砌石存在不同程度的隐患或质量较差,这些隐患的类型一般为:①浆砌石厚度较薄;②浆砌石与下部土体分离形成架空;③浆砌石胶结不良或松散;④浆砌石出现裂缝等不良现象。 护砌整体质量较差的堤段多为年久失修严重,浆砌石与下部堤身土体接触差,多形成架(悬)空状态,造成护砌断裂、塌陷等不良现象较普遍,且多具一定规模。而造成上述现象存在的原因,笔者分析后认为浆砌石面存在许多缝隙,且砂浆质量差、少浆,下部又无防渗护层,堤身土体多由粉细砂组成,经降水入渗,粉细砂局部被冲刷淘失,在砌石与堤身土体之间形成空洞,并有继续扩大发展之趋势。该物探成果经开挖验证(见图4——开挖照片),完全符合客观实际,受到了甲方的赞誉。6 结语地质雷达以其高效快速、高精度在护险工程探测中能够发挥重要作用,取得了良好的应用效果,且对浅层或超浅层的工程探测中有着十分广阔的应用前景,然而地质雷达的探测深度和精度与所采用的天线频率有很大关系,天线的频率越低探测深度越大,则精度越低;而天线的频率越高,探测深度越浅,则精度越高。本次采用中心频率250MHz的天线进仅供参考,请自借鉴。希望对您有帮助。 
战略选区项目通过对深水海域、西部复杂山地地区、南方碳酸盐岩地区、火山岩覆盖区等几类典型地球物理勘探久攻不克地区的难点地区开展地震、非地震、综合地球物理勘探联合攻关,以及开展天然地震层析成像攻关实验,已取得了长足进步,直接带动获得了一批有价值的油气勘探发现和成果,形成了针对深水的海域长电缆地震勘探技术、适用于西部复杂山地和南方碳酸盐岩裸露区的宽线地震勘探技术、复杂地区三维重、磁、电勘探技术、针对火山岩覆盖区和南方碳酸盐岩裸露区的综合地球物理勘探技术、可应用于复杂山地的天然地震层析成像技术等6项地球物理勘探技术创新集成。(一)海域长电缆地震勘探技术南海北部陆坡深水区石油地质条件优越,勘探潜力巨大。但由于陆坡区水深急剧变深,达300~3200m,峡谷纵横,水道复杂,形成了海底非常崎岖的地形地貌。由于深水崎岖海底,造成长期以来在该地区所获得的地震资料品质普遍很差,反映在信噪比低、多次波绕射波发育,地震资料从浅到深,相位连续性差,能量衰减快,特别是海沟的下边,至海底2s之下,没有较好的反射。深水崎岖海底严重影响了下伏地层的地震成像,同时造成了构造形态的严重畸变,难以进行目标评价,更谈不上对深水扇的精细刻画,深水崎岖海底的地震勘探技术亟待提高。要从根本上改善深水崎岖海底地区的地震资料的品质,必须要从全面提升原始资料采集的质量与资料处理技术这两大环节入手。分析总结以往在南海北部深水区采集地震资料所采用的电缆,都是利用常规电缆,即电缆长度小于7000m的电缆。由于电缆长度的制约,造成对深水崎岖海底地区的地震信号不能充分进行接受,这是地震资料采集环节中所存在的主要问题。此外,由于没有形成与深水地震资料相配套的集成创新资料处理技术,严重影响了对下伏地层的地震成像,造成构造形态严重畸变,时间构造图无法反映本地区构造的真实形态。战略选区项目启动后,针对南海北部深水崎岖海底的地震攻关策略是:首次采用长电缆长度7000m以上的长电缆进行地震资料采集。由于采用长电缆技术,获得地震资料的浅、中层信噪比大幅提高,同时深层信号能量有所提高。在资料处理过程中,应用了以下几项集成创新技术及方法:①分频去噪及波动方程压制崎岖海底多次波技术;②叠前深度偏移消除崎岖海底影响技术;③移动平均消除崎岖海底影响的时深转换方法。通过长电缆地震资料采集技术与集成创新处理技术的紧密结合,地震资料处理效果的品质显著提高,所获得的高品质地震勘探成果,为我国在南海北部深水海域取得重大天然气勘探发现,奠定了坚实的基础。战略选区项目在南海北部深水崎岖海底所获得的长电缆地震勘探创新应用,标志着我国深水区长电缆地震采集和处理技术进入新的阶段。(二)复杂地区宽线地震勘探配套技术系列本项配套技术系列主要由以下5项构成:高精度卫片遥感信息观测系统设计技术近年来利用卫片遥感数据避开障碍物或激发接收条件较差的地段,合理选择检波点、炮点的设计技术日趋成熟。卫片遥感数据的利用使复杂地区的观测系统设计工作更直观、针对性,大大缩短了设计和施工周期,取得了良好的效益。复杂近地表结构精细调查和建模技术高速层激发技术(1)逐点设计激发井深。(2)高速层界面的确定。(3)优选激发岩性。宽线采集技术宽线采集主要技术:一是采用三维近地表调查和建模技术,对宽线的每一条激发、接收线计算三维静校正;二是观测系统设计时用三维设计理念,单线有较高覆盖次数(至少不低于单线二维覆盖次数),通过野外验证,确定最佳的采集参数;三是根据精细近地表模型,逐点设计激发深度和检波器组合,提高原始资料信噪比的有效手段。宽线采集主要优点:一是增加有效覆盖次数,提高了对干扰的压制能力;二是多线激发和接收增加了炮点选择范围,有利于优选激发点。与宽线采集工作相互配套的针对性处理技术在选区项目中西部复杂山地地区、南方碳酸盐岩地区和大庆外围盆地火山岩覆盖地区采用宽线地震勘探技术所取得的效果表明,在地震地质条件复杂、资料长期不过关的地区,通过该方法大幅度地提高了原始地震资料的品质,基本查清了构造特征;结合资料处理中采用针对性处理技术,有望获得勘探认识上新的突破,复杂地区宽线地震勘探技术值得推广应用。(三)高原地震调查战略选区项目在高原地震攻关中,是围绕着确保野外采集施工质量,提高覆盖次数来提高资料信噪比来进行的。战略选区项目针对羌塘盆地地震攻关资料信噪比低的问题,强化对本工区地震地质条件的了解及原始资料的分析,结合低信噪比地区资料的处理经验,通过以下几个针对性处理技术攻关,有效地改善了资料品质:①静校正处理技术;②多系统、多方法联合去噪;③地表一致性和提高分辨率的处理技术。从所获得的地震攻关成果剖面来看,地震剖面浅、中层反射波组较为齐全,且主要反射波组连续性好,过渡自然,易于识别和追踪,深层反射有所改善,反映的构造特征较为明显、可靠,基本可以达到了解地腹基底起伏和区域构造格局的地质任务。通过对选区羌塘地震资料精细的解释,基本获得了区域地层展布状况、侏罗系和三叠系主要目的层展布特征、上覆盖层的构造格架及构造样式、基底埋深、基底形态及断裂特征。为进一步在西藏地区开展地震勘探工作奠定了重要的基础。(四)复杂地区三维重磁电勘探技术西部山前带及地表复杂区油气勘探潜力巨大,是我国油气资源的主要接替地区。由于山前带地表复杂,表层岩性多变,低降速带影响大、地下构造复杂,给大面积地震勘探工作带来了极大困难。三维重磁电勘探技术,与二维技术相比,具有精度高、信号均匀,能有效抑制噪声和减少静态位移影响,消除了主测线与联络测线的闭合差等优势,特别适合复杂地下局部构造情况。三维重磁电勘探技术更有利于开展进行重磁电资料的约束反演及综合解释,能够得到较为真实反映地质现象的剖面和三维资料,补充深层地震勘探资料的不足。三维重磁电勘探技术在柴达木选区工作获得了成功应用,体现在以下4个方面:①在花土沟-狮子沟地区完成的高精度重磁、三维电法(MT)勘探,这是国内第一次在油气勘探复杂区实施的重磁电三维综合地球物理勘探;②在PC机群上率先实现了三维MT反演并行算法,并应用于实际MT资料;③首次实现了三维MT反演数据在Landmark工作站上三维显示与解释,直观展示电磁法成果,提高了综合解释能力和效果;④实现了与地震资料同一平台的重、磁、电资料三维解释。(五)火山岩覆盖区、南方碳酸盐岩地区综合地球物理勘探技术火山岩覆盖区综合地球物理勘探技术大杨树盆地是我国东部地区较为典型的火山岩覆盖型盆地,钻探表明该盆地具有较好的含油气勘探前景。在前期重磁解释的基础上,对盆地南部坳陷区先后两次部署了25条测线的地震勘探。但由于表层火山岩的强屏蔽作用,造成了甘河组火山岩地层下地震反射能量弱,致使盆地基底及主要目的层九峰山组、龙江组沉积岩分布范围不清,地震测区二级构造单元不能落实,严重制约了勘探的步伐。从地层物性数据可知,基底与盖层存在明显的密度差,可利用重力资料反演盆地基底深度。而在重力反演解释中,又可利用地震资料对浅层甘河组火山岩的良好反射来确定该组火山岩的厚度及分布,消除甘河组高密度火山岩对重力反演基底深度造成的影响进行校正,磁力资料又可解决不同类型火山岩分布。通过对该区综合地球物理资料的处理解释,较好地确定了基底分布情况,进一步提升了对该区的地质认识。战略选区项目通过在大杨树盆地这一典型高位火山岩覆盖盆地开展重、磁、电-地震联合正反演、综合解释攻关,探索了火山岩覆盖区综合地球物理勘探技术。南方碳酸盐岩地区综合地球物理勘探技术黔南-桂中坳陷位于贵州省南部和广西壮族自治区中北部,是典型的南方海相残留盆地。针对探区海相碳酸盐岩裸露,以及铁路、公路、高压线、工厂等人文干扰因素严重的特点,战略选区项目采取了详细踏勘、认真选点、深埋电极磁棒、多套电极组合和现场远参考处理等措施,压制了人文干扰,提高信噪比,较大地改善了采集资料质量。在分析多年的MT勘探成败经验,认识到施工难点和原因,制定出有针对性的技术对策,通过南方海相碳酸盐岩裸露区的电法(MT)勘探攻关,获得了一套提高原始资料质量的采集技术和方法措施,较大幅度地提高了观测数据质量,表明采集技术攻关是有针对性的、有效的。通过对MT资料处理攻关,确定了“利用有效视电阻率处理、综合信息二维反演成像系统为依托的二维连续介质反演、最优化信息异常分层技术和电阻率界面成像”的资料处理方法;处理成果真实,处理技术是成功有效的。结合区域地质、地震、钻井等资料,依据首支视电阻率、测井电阻率和井旁测深反演电阻率统计获得的岩电特征,按电法剖面的地质解释方法,较可靠地解释构造分区、断裂、地层展布,以及局部异常体等地质构造,成果可信度高。战略选区项目在黔南-桂中碳酸盐岩地区开展综合地球物理勘探技术攻关是有成效的,积累了宝贵的经验。(六)天然地震层析成像技术战略选区项目在柴达木盆地西部复杂山地地区开展的天然地震层析成像攻关实验结果表明,该项技术的应用攻关是较为成功有效的。如果能够在目前已经取得成果认识的基础之上,进一步开展相关理论与技术方面的研究工作,增加台站密度,有望达到更高的精度和成像分辨率。