期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    3

  • 浏览数

    217

自由的淅沥
首页 > 期刊问答网 > 期刊问答 > 与大数据有关的论文题目大全

3个回答 默认排序1
  • 默认排序
  • 按时间排序

秦时的少年

已采纳
首先,当前计算机专业的毕业设计有很多题目可以选择,要想找一些相对简单的题目,可以重点考虑那些参考资料相对比较多的题目,但是要想取得较好的成绩,或者是想有一些创新,还需要重点关注一下近些年来的各种新技术,比如大数据、人工智能领域就有很多题目可以选择。对于本科生的毕业设计来说,虽然没有像研究生那样有明确的创新要求,但是要是能够把新技术与行业领域相结合,那么在毕业设计的过程中会得到更多的收获。当前大数据在技术体系上已经趋于成熟了,所以计算机专业的本科生,在做毕业设计的过程中,可以重点关注一下大数据相关的题目。大数据的行业应用场景非常多,比如大数据与金融、教育、医疗、装备制造等诸多领域都有大量的结合点,而且也有很多成熟的案例可以参加,所以可以结合自身的知识结构和发展规划,来选择一个适合自己的题目方向。在选择具体的题目时,还需要结合一下学校和导师的资源整合情况,比如在财经类大学就读,可以重点关注一下金融相关方向。本科生在完成毕业设计的过程中,除了要重视理论知识的学习之外,还需要重视实践能力的提升,尤其要重视程序设计能力的提升,比如当前大数据开发岗位的人才需求量就相对比较大,借助于毕业设计,也可以重点提升一下自身的就业竞争力,这对于还没有拿到offer的同学来说就更为重要了。我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域

与大数据有关的论文题目大全

236 评论(14)

sxdxsrf

寿险行业数据挖掘应用分析  寿险是保险行业的一个重要分支,具有巨大的市场发展空间,因此,随着寿险市场的开放、外资公司的介入,竞争逐步升级,群雄逐鹿已成定局。如何保持自身的核心竞争力,使自己始终立于不败之地,是每个企业必须面对的问题。信息技术的应用无疑是提高企业竞争力的有效手段之一。寿险信息系统经过了多年的发展,已逐步成熟完善,并积累了相当数量的数据资源,为数据挖掘提供了坚实的基础,而通过数据挖掘发现知识,并用于科学决策越来越普遍受到寿险公司的重视。  数据挖掘  数据挖掘(Data Mining,DM)是指从大量不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、有用的信息和知识的过程。其表现形式为概念(Concepts)、规则(Rules)、模式(Patterns)等形式。  目前业内已有很多成熟的数据挖掘方法论,为实际应用提供了理想的指导模型。CRISP-DM(Cross-Industry Standard Process for Data Mining)就是公认的、较有影响的方法论之一。CRISP-DM强调,DM不单是数据的组织或者呈现,也不仅是数据分析和统计建模,而是一个从理解业务需求、寻求解决方案到接受实践检验的完整过程。CRISP-DM将整个挖掘过程分为以下六个阶段:商业理解(Business Understanding),数据理解(Data Understanding),数据准备(Data Preparation),建模(Modeling),评估(Evaluation)和发布(Deployment)。  商业理解就是对企业运作、业务流程和行业背景的了解;数据理解是对现有企业应用系统的了解;数据准备就是从企业大量数据中取出一个与要探索问题相关的样板数据子集。建模是根据对业务问题的理解,在数据准备的基础上,选择一种更为实用的挖掘模型,形成挖掘的结论。评估就是在实际中检验挖掘的结论,如果达到了预期的效果,就可将结论发布。在实际项目中,CRISP-DM模型中的数据理解、数据准备、建模、评估并不是单向运作的,而是一个多次反复、多次调整、不断修订完善的过程。  行业数据挖掘  经过多年的系统运营,寿险公司已积累了相当可观的保单信息、客户信息、交易信息、财务信息等,也出现了超大规模的数据库系统。同时,数据集中为原有业务水平的提升以及新业务的拓展提供了条件,也为数据挖掘提供了丰厚的土壤。  根据CRISP-DM模型,数据挖掘首先应该做的是对业务的理解、寻找数据挖掘的目标和问题。这些问题包括:代理人的甄选、欺诈识别以及市场细分等,其中市场细分对企业制定经营战略具有极高的指导意义,它是关系到企业能否生存与发展、企业市场营销战略制定与实现的首要问题。  针对寿险经营的特点,我们可以从不同的角度对客户群体进行分类归纳,从而形成各种客户分布统计,作为管理人员决策的依据。从寿险产品入手,分析客户对不同险种的偏好程度,指导代理人进行重点推广,是比较容易实现的挖掘思路。由于国内经济发展状况不同,各省差异较大,因此必须限定在一个经济水平相当的区域进行分析数据的采样。同时,市场波动也是必须要考虑的问题,一个模型从建立到废弃有一个生命周期,周期根据模型的适应性和命中率确定,因此模型需要不断修订。  挖掘系统架构  挖掘系统包括规则生成子系统和应用评估子系统两个部分。  规则生成子系统主要完成根据数据仓库提供的保单历史数据,统计并产生相关规律,并输出相关结果。具体包括数据抽取转换、挖掘数据库建立、建模(其中包括了参数设置)、模型评估、结果发布。发布的对象是高层决策者,同时将模型提交给应用评估子系统根据效果每月动态生成新的模型。  应用评估子系统可以理解为生产系统中的挖掘代理程序,根据生成子系统产生的规则按照一定的策略对保单数据进行非类预测。通过系统的任务计划对生产数据产生评估指标。具体包括核心业务系统数据自动转入数据平台、规则实时评估、评估结果动态显示、实际效果评估。规则评估子系统根据规则进行检测。经过一段时间的检测,可利用规则生成子系统重新学习,获得新的规则,不断地更新规则库,直到规则库稳定。  目前比较常用的分析指标有: 险种、交费年期、被保人职业、被保人年收入、被保人年龄段、被保人性别、被保人婚姻状况等。  实践中,可结合实际数据状况,对各要素进行适当的取舍,并做不同程度的概括,以形成较为满意的判定树,产生可解释的结论成果。
230 评论(8)

xiaomai789

当今时代,电脑已经成为人们生活以及公司发展的必需品。现在和未来一切都是电脑,所以现在电脑技术还是很有前途的,只要你的技术过硬,找到一份好工作,获得高额薪水,一切都不是问题。
343 评论(10)

相关问答