zhaoxhei
第一节 地球科学的研究对象和研究内容
人类生活在地球上,衣食住行等一切活动都离不开地球。如人们要靠山 川大地获取生活资料以维持生命,要从地球中开采矿物资源制造生产和生活 工具,要了解地球上的自然地理和气候条件以便发展生产,要与地球上发生 的各种自然灾害作斗争。因而,人类在长期的实践中逐步加深了对地球的认 识,并且逐渐形成了一门以地球为研究对象的科学——地球科学
(geoscience)。 地球科学简称地学,是数学、物理学、化学、天文学、地学、生物学六
大基础自然科学之一。地球科学以地球为研究对象,包括环绕地球周围的气 体(大气圈)、地球表面的水体(水圈)、地球表面形态和固体地球本身。 至于地球表面的生物体(生物圈),由于其研究内容广、分支学科较多、且 研究方法具有特殊性,因而已独立成一门专门的基础自然科学——生物学。 但生物的起源与演化、生物体与生存的地球环境之间的关系也属于地球科学 的研究范畴。
地球科学是一门理论性和应用性都很强的科学。它不仅承担着揭示自然
界奥秘与规律的科学使命,同时也为生活在地球上的人类如何利用、适应和 改造自然提供科学的方法论。随着生产和科学技术的发展,地球科学的研究 内容和领域也不断地深入和扩展,逐渐形成了日臻完善的由多学科组成的综 合性学科体系。地球科学目前主要包括地质学、地球物理学、地理学、气象 学、水文学、海洋学、土壤学、环境地学等学科。其中,地质学(geology) 由于其研究领域广博、分支学科较多,并且以研究地球的本质特征为目的, 因而成为地球科学的主要组成部分,以至于人们有时把地质学和地球科学作 为同义语使用,其实两者的含义是有差别的,它们具有包容关系。随着科学 的发展,地球科学还会不断地诞生新的学科和出现一些边缘学科。
地理学(geography)主要研究地球表面的各种地形、地理环境及其结构、
分布和演变规律,并涉及到自然和社会两个领域之间的相互关系。地理学一 般可分为自然地理学和人文地理学两大组成部分。自然地理学是研究自然地 形、地理环境的结构及发生、发展规律的学科,主要包括普通自然地理学、 区域自然地理学、地志学等。人文地理学是研究人和社会与自然地形、地理 之间的相互关系的学科,主要包括政治地理学、社会地理学、人口与聚落地 理学、经济地理学、历史地理学等。
气象学(meteorology)以地球周围的大气圈为研究对象,主要研究大气 的各种物理性质、物理现象及其变化规律。其研究内容也很广泛,包括许多 分支学科和应用学科。主要的分支学科有大气物理学、天气学、气候学、高 空气象学、动力气象学等,主要的应用学科有卫星气象学、无线电气象学、 航空气象学、海洋气象学、农业气象学、林业气象学等。其目的在于揭示大 气中的各种物理现象和物理过程的发生、发展本质,从而掌握并应用它为人 类生活和国家经济建设服务。
水文学(hydrology)和海洋学(oceanography)以地球表面分布的水体 为研究对象。水文学主要研究地球上江河、湖沼、冰川、地下水以及海洋等 各种水体的数量、质量、运动变化与分布规律,以及它们与地理环境、生态
系统和人类社会之间的相互影响与相互联系。海洋学是以海洋作为一个独立 体进行研究的,它实际上是从地球科学的其它几个分支学科中独立出来的, 这是由于海洋在现代地球科学、人类生存环境和未来社会发展中的地位越来 越重要的缘故。海洋学是研究海洋中发生的各种现象和规律及其相互关系的 各门学科的总称,根据研究内容不同可分为海洋物理学、海洋水文学、海洋 化学、海洋生物学、海洋气象学和海洋地质学等。
土壤学(soil science)以地球表面发育的土壤层为研究对象。主要研 究土壤的物质组成、结构、类型、分布和形成发展过程。根据具体研究内容 和应用领域的不同,土壤学也有一些分支学科,如土壤生物学、土壤地理学、 土壤气候学、土壤物理学、土壤化学、土壤地质学等。
地球物理学(geophysics)是应用物理学的方法研究地球的一门学科, 是近代发展起来的地球科学与物理学相结合的一门重要边缘学科。广义的地 球物理学的研究对象包括固体地球及其表部的水体和周围的大气圈。但由于 水体和大气圈的研究都已建立起相应的独立学科,所以一般所称的地球物理 学是狭义的,其主要研究对象是固体地球,因而也可称之为固体地球物理学。 地球物理学重点研究固体地球的各种物理性质、物理现象及其发生与发展过 程、地球的内部构造与组成、地球的起源与演化等。其主要分支学科有地震 学、地磁学、重力学、地热学、地电学、大地测量学、大地构造物理学和应 用地球物理学等。其中,应用地球物理学主要是研究地球物理勘探方法及其 在地球资源的勘探与开发、地球环境的监测与保护等方面的应用。
地质学(geology)研究的主体对象也是固体地球,当前主要是研究固体
地球的表层——地壳或岩石圈。地壳或岩石圈的厚度一般为几十到二百公里 左右,与地球的半径(6371km)相比只是一个很薄的表壳。这一薄壳之所以 成为地质学当前研究的主要对象,一方面是出于实际需要,因为这一层与人 类的生活、生产及生存都直接相关;另一方面是受现时人类能力的限制。人 们可以直接观测和研究地球表层,但现阶段人类尚无能力对地下深处进行直 接研究。钻井取样是目前人们获取地球较深部物质进行直接研究的唯一途 径,但由于受当前技术水平的限制,钻井所能达到的深度是有限的。目前世 界上最深的钻井(5km)位于俄罗斯西北部的科拉半岛,这一深度尚不足 该区大陆地壳厚度的二分之一。可以相信,随着科学技术的发展,地质学研 究的对象将不断向地球的深部(如地幔、地核)扩展。
地质学的研究内容主要包括固体地球(重点是地壳或岩石圈)的物质组
成、内部构造和形成演化历史。按其研究内容和任务的不同,地质学的主要 分支学科可简举如下:
(1)研究地球的物质组成方面的学科,如结晶学、矿物学、岩石学等;
(2)研究地球的内部构造方面的学科,如构造地质学、构造物理学、区 域构造学、地球动力学等;
(3)研究地球的形成演化方面的学科,如古生物学、地层学、地史学、 古地理学、地貌及第四纪地质学等;
(4)研究地质学的应用方面的学科,可分为两个方面:其一是研究地下 资源方面的分科,如矿床学、石油地质学、煤田地质学、水文地质学等;其 二是研究地质与人类生活环境及灾害防护方面的分科,如工程地质学、环境 地质学、地震地质学等。
此外,人们为了更好地研究上述地质学的各个方面,不断地吸收和借鉴
其它一些学科的先进理论、方法和技术,用以促进和深化地质学的各项研究, 于是逐渐形成了一系列的边缘学科,如数学地质、地球化学、同位素地质学、 天文地质学、海洋地质学、遥感地质学及实验地质学等,这些边缘学科在现 代地质学各领域的研究中发挥着极其重要的作用。
近几十年来,由于世界各国工业、农业、军事、航天、交通等产业的飞 速发展,其结果给地球的自然环境带来了巨大的影响。这种影响有些是直接 的(如污染问题)、有些是间接的(如气候变化),它已经严重地影响到地 球的自然生态和人类的生存与发展,因而受到科学工作者和全人类的广泛关 注。这一问题与地球科学和环境科学关系密切,于是在地球科学中逐渐形成 了一门与环境科学相结合的边缘学科,即环境地学。环境地学主要研究地球 自然环境的组成、结构、形成、演变以及环境的破坏、污染、防止、保护、 改良与评价等。根据地球科学中各学科所研究的侧重点不同,又可分为环境 地质学、环境地理学、环境气象学、环境水文学、环境海洋学、环境土壤学 等。 
地质雷达在水利工程质量检测中的应用1 前言 地质雷达作为近十余年来发展起来的地球物理高新技术方法,以其分辨率高、定位准确、快速经济、灵活方便、剖面直观、实时图象显示等优点,备受广大工程技术人员的青睐。现已成功地应用于岩土工程勘察、工程质量无损检测、水文地质调查、矿产资源研究、生态环境检测、城市地下管网普查、文物及考古探测等众多领域,取得了显著的探测效果和社会经济效益,并在工程实践中不断完善和提高,必将在工程探测领域发挥着愈来愈重要的作用。而地质雷达技术用于堤防隐患的探测尚属初步阶段,通过广大物探技术人员的共同努力,达到了解和掌握不同隐患类型在雷达图像上的反映特征,在不断总结探测经验的基础上,提高异常的判断能力和精度,较确切地推定堤防工程隐患的性质和位置,以便指导有关管理单位加强堤防工程重点部位的维护和防范,提高和巩固堤防工程的运行周期和防洪能力。本文以永定河堤防工程护砌质量检测为实例,说明地质雷达技术在堤防工程探测中的应用情况,以此与同行进行切磋,推动堤防工程探测技术的发展,不妥之处,敬请批评指正。2 基本原理地质雷达与探空雷达相似,利用高频电磁波(主频为数十数百乃至数千兆赫)以宽频带短脉冲的形式,由地面通过发射天线(T)向地下发射,当它遇到地下地质体或介质分界面时发生反射,并返回地面,被放置在地表的接收天线(R)接收,并由主机记录下来,形成雷达剖面图。由于电磁波在介质中传播时,其路径、电磁波场强度以及波形将随所通过介质的电磁特性及其几何形态而发生变化。因此,根据接收到的电磁波特征,既波的旅行时间(亦称双程走时)、幅度、频率和波形等,通过雷达图像的处理和分析,可确定地下界面或目标体的空间位置或结构特征。雷达波(电磁波)在界面上的反射和透射遵循Snell定律。实际观测时,由于发射天线与接收天线的距离很近,所以其电磁场方向通常垂直于入射平面,并近似看作法向入射,反射脉冲信号的强度,与界面的反射系数和穿透介质的衰减系数有关,主要取决于周围介质与反射目的体的电导率和介电常数,对于以位移电流为主的介质,既大多数岩石介质属非磁性、非导电介质,常常满足σ/ωε<<1,于是衰减系数(β)的近似值为:既衰减系数与电导率(σ)及磁导率(μ)的平方根成正比,与介电常数(ε)的平方根成反比。而界面的反射系数为:式中Z为波阻抗,其表达式为:显然,电磁波在地层中的波阻抗值取决于地层特性参数和电磁波的频率。由此可见,电磁波的频率(ω=2πf)越高,波阻抗越大。对于雷达波常用频率范围(25~1000MHz),一般认为σ<<ωε,因而反射系数r可简写成:上式表明反射系数r主要取决于上下层介电常数差异。应用雷达记录的双程反射时间可以求得目的层的深度H:式中:t为目的层雷达波的反射时间;c为雷达波在真空中的传播速度(3m/ns);εr为目的层以上介质相对介电常数均值。3 工程概况北京市界内永定河左、右堤防于清朝乾隆年间修筑,后经数次维修和加固形成现有规模,主体为梯形,顶宽约10m,可见堤高约5~6m,堤内坡坡度为1:5~1:0,外坡相对较缓为1: 0~1: 5。堤身为人工堆积,主要由粉细砂(中下游段)、卵砾石(上游段)组成。介质构成复杂多变,分布不均,且处于包气带中,极为干燥。堤基为第四系全新统地层,岩性以粉细砂为主,下游段出现黑色淤泥质粘土夹层,层厚约7~0m。地下水位埋深(自地表计):卢沟桥附近约0m,至下游逐渐变浅,达省/市界附近(石佛寺)一带约0m。永定河卢沟桥下游至省/市界左、右堤防共划定险工段12处23段,分布在左堤约60Km和右堤约30Km范围内,其险工段内坡为浆砌石(厚约40cm——原设计标准)结合铅丝石笼构成的护砌,并于1964~1989年间营建,浆砌石护坡除可见堤身部分露出外,其余部分与铅丝石笼水平护底均埋于河滩滩地以下,一般为0~0m,外铺0m的铅丝石笼护底。这些险工段在历史上均有决口或抢险加固的记载。为满足北京市对永定河防洪设计的需要,保证该堤防渡汛万无一失,故进行地球物理勘探工作,以检测堤防工程的护砌质量,便于99年6月份之前进行加固处理。4 测试技术及资料处理为判断险工段堤内坡护险浆砌石质量的优劣,沿内坡坡脚布置一条雷达探测剖面,并按其走向连续测试。外业施测使用瑞典MALA地质仪器有限公司生产的RAMAC/GPR地质雷达系统,天线的中心频率为250MHz,收发天线的间距为6m。实测采用剖面法,且收发天线方向与测线方向平行。记录点距为2m,采样频率为3893MHz,单一记录迹线的采样点数为512,迭加次数为16,记录时窗为180ns,若取堤身土体的雷达波速为08~10m/ns,表层浆砌石的雷达波速为10~12m/ns,综合考虑该地层剖面特征,选取雷达波速中值为10m/ns,则此时该雷达系统的最小纵向分辨率为8~10cm。雷达资料的数据处理与地震反射法勘探数据处理基本相同,主要有:①滤波及时频变换处理;②自动时变增益或控制增益处理;③多次重复测量平均处理;④速度分析及雷达合成处理等,旨在优化数据资料,突出目的体、最大限度地减少外界干扰,为进一步解释提供清晰可辨的图像。处理后的雷达剖面图和地震反射的时间剖面图相似,可依据该图进行地质解释。5 成果分析地质雷达资料的地质解释是地质雷达探测的目的。由数据处理后的雷达图像,全面客观地分析各种雷达波组的特征(如波形、频率、强度等),尤其是反射波的波形及强度特征,通过同相轴的追踪,确定波组的地质意义,构制地质——地球物理解释模型,依据剖面解释获得整个测区的最终成果图。地质雷达资料反映的是地下地层的电磁特性(介电常数及电导率)的分布情况,要把地下介质的电磁特性分布转化为地质分布,必须把地质、钻探、地质雷达这三个方面的资料有机结合起来,建立测区的地质——地球物理模型,才能获得正确的地下地质结构模式。雷达资料的地质解释步骤一般为:⑴ 反射层拾取根据勘探孔与雷达图像的对比分析,建立各种地层的反射波组特征,而识别反射波组的标志为同相性、相似性与波形特征等。⑵ 时间剖面的解释在充分掌握区域地质资料,了解测区所处的地质结构背景的基础上,研究重要波组的特征及其相互关系,掌握重要波组的地质结构特征,其中要重点研究特征波的同相轴的变化趋势。特征波是指强振幅、能长距离连续追踪、波形稳定的反射波。同时还应分析时间剖面上的常见特殊波(如绕射波和断面波等),解释同相轴不连续带的原因等。下部架空时的图像,该剖面第三反射同相轴自剖面点4m处断开,形成“背斜”状的强反射层,此现象延续到剖面点8m处,此段浆砌石与下部土体分离导致架空,其范围与已知情况吻合。 通过雷达测试成果的地质解释共圈定出73处浆砌石存在不同程度的隐患或质量较差,这些隐患的类型一般为:①浆砌石厚度较薄;②浆砌石与下部土体分离形成架空;③浆砌石胶结不良或松散;④浆砌石出现裂缝等不良现象。 护砌整体质量较差的堤段多为年久失修严重,浆砌石与下部堤身土体接触差,多形成架(悬)空状态,造成护砌断裂、塌陷等不良现象较普遍,且多具一定规模。而造成上述现象存在的原因,笔者分析后认为浆砌石面存在许多缝隙,且砂浆质量差、少浆,下部又无防渗护层,堤身土体多由粉细砂组成,经降水入渗,粉细砂局部被冲刷淘失,在砌石与堤身土体之间形成空洞,并有继续扩大发展之趋势。该物探成果经开挖验证(见图4——开挖照片),完全符合客观实际,受到了甲方的赞誉。6 结语地质雷达以其高效快速、高精度在护险工程探测中能够发挥重要作用,取得了良好的应用效果,且对浅层或超浅层的工程探测中有着十分广阔的应用前景,然而地质雷达的探测深度和精度与所采用的天线频率有很大关系,天线的频率越低探测深度越大,则精度越低;而天线的频率越高,探测深度越浅,则精度越高。本次采用中心频率250MHz的天线进仅供参考,请自借鉴。希望对您有帮助。