庄周梦蝶
寒假中的一天,我和妈妈一起出去逛街。我们边走边商量,先去服装店买衣服,再去超市购物,最后回家。 街上产品琳琅满目,到处都热热闹闹,喜气洋洋。忽听一个高音喇叭广告,吸引了妈妈:清仓大处理!清仓大处理!买一送一!心动不如行动,大家快来买呀!……妈妈一听心动了,于是走进商场行动起来。这时我看见了在广告排的最后一行有几个较小的字,是这么一句话:“(注:送的衣服价格不超过买的衣服价格)”。虽然我感到很奇怪,但我还是跟着妈妈进去了,妈妈先挑中了一件黑色羽绒服给自己,需要204元,又挑了一件棉大衣给爸爸,需要169元,妈妈想也没想就付了钱,觉得挺合算,用204元就可以买到369元的东西。可我总觉得很奇怪,俗话说:“只有买亏,没有卖亏。”我边走边想:没有优惠时的总价是204+165=369元;平均每件只有369 ÷2=5元;把这个价格与羽绒服的价格对比一下:204元>5元 204-5=5元看来妈妈亏了5元这个结果还没加上成本与售价间的差距耶!看来商家永远是赚了! 
2001年9月29日清晨,温哥华的大街上人山人海,车水马龙。一只鸭妈妈带领着一群憨态可掬的小鸭子们,漫步在温哥华街头。这可为温哥华的街头增添了一道独特的风景。 它们沐浴着温哥华清晨的第一缕阳光,对来来往往的人和一辆辆呼啸而过的汽车熟视无睹。几只可爱的小鸭子左瞧瞧,右看看,好像对一切都是那么陌生,那么好奇。 忽然,只听“扑通”一声,几只小鸭子顿时不知去向,原来,小鸭子是不小心掉进了下水道。 这时,鸭妈妈快速扇动着翅膀,脖子拼命往下伸,想把小鸭子叼起来,可是下水道太深,鸭妈妈够不着落水的小鸭子。 这时,鸭妈妈冷静了下来,赶紧环顾四周,刚好看见不远处有一个巡警,就急忙奔去。 鸭妈妈跑到巡警面前,大声地叫着,用嘴咬住巡警的裤腿,尽量转移巡警的注意力。巡警不明白鸭妈妈要做什么,就把它从身边拿开继续工作。 鸭妈妈看出了巡警不明白到底是怎么回事,又继续咬着他的裤腿。 巡警看着鸭妈妈老是这样做,感到有些蹊跷,就站了起来,跟着鸭妈妈走了过来。 鸭妈妈和巡警来到下水道前,鸭妈妈用嘴指向那几个落水的小鸭子。这位巡警终天明白了事情的前因后果,知道小鸭子随时可能被水冲走。巡警赶快跑到河边,向钓鱼的人借了一个捞网。伸下又深又窄的下水道,将一只只水淋淋的鸭子救了出来。鸭妈妈看见小鸭获救了,高兴地直扑着翅膀,还不时用嘴啄一下小鸭子的身子。它们重新站成一排,跟着鸭妈妈继续走着。 巡警目送它们很远,很远。 在朝阳的照耀下,温哥华的大街上更加美丽,绚丽夺目的阳光
数学是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。 数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。 数学主要的学科首要产生于商业上计算的需要、了解数字间的关系、测量土地及预测天文事件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的子领域相关连著。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习 数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的自然数及整数的算术运算。整数更深的性质被研究于数论中,此一理论包括了如费马最后定理之著名的结果。 当数系更进一步发展时,整数被承认为有理数的子集,而有理数则包含于实数中,连续的数量即是以实数来表示的。实数则可以被进一步广义化成复数。数的进一步广义化可以持续至包含四元数及八元数。自然数的考虑亦可导致超限数,它公式化了计数至无限的这一概念。另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较。 数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关连性。
小学生计算能力的培养是小学数学教学的一项重要任务。教学大纲要求学生在计算能力方面达到“熟练” 、“比较熟练”、“会”三个层次,在计算的范围上做了“四个为主”和“三个不超过”的明确规定。那么, 如何加强计算教学,提高计算能力呢? 一、严格教学要求是前提 教学大纲在计算教学上要求达到三个层次,具体地说,就是根据每一部分所占的地位、作用区别对待,对 一位数的加减法、表内乘除法等最重要的口算要求达到熟练;对于除此以外的基本口算,万以内的加减法和用 一两位数乘、除多位数的笔算,要求达到比较熟练;对于三位数乘、除多位数的笔算只要求会算。在小学阶段 ,特别是小学中低年级,是计算教学的重要阶段,必须过好计算关。 要过好计算关,首要的是保证计算的正确,这是核心。如果计算错了,其它就没有意义了。但如果只讲正 确,不要求合理、灵活,同样影响到计算能力的提高。如:20以内的加减法,有的学生用凑十法和用看加算减 计算,有的则靠摆学具或掰手指、脚趾、逐一数数做加减法,计算结果都正确,但后者显然达不到要求。又如 :在两位数加、减两位数中,有各种计算方法,可以从低位算起,也可以从高位算起,要引导学生认真观察, 具体分析,灵活运用。在三四个数的连加中,关键是会凑整,如果不会凑整,也影响到计算的正确度,要做到 比较熟练也是困难的。学了运算定律和速算方法后,如果不会运用,即使计算正确,也达不到教学要求。因此 ,严格按照教学要求进行教学,是提高学生计算能力的前提。 二、讲清算理是关键 大纲强调,“笔算教学应把重点放在算理的理解上”,“根据算理,掌握法则,再以法则指导计算”。学 生掌握计算法则关键在于理解。既要学生懂得怎样算,更要学生懂为什么要这样算。如教学《用两位数乘》( “九义”六册),要使学生理解两点:①24×13通过直观图使学生看到,就是求13个24连加的和是多少,可以 先求出3盒的支数是多少即3个24是多少,再求10盒的支数是多少即10个24是多少,然后把两个积加起来,从而 让学生知道,计算乘数是两位数的乘法要分两步乘,第三步是相加,这样使学生看得见,摸得着,通过例题教 学,使计算的每一步都成为有意义的操作,让学生在操作中理解算理,掌握算法。②计算过程中还要强调数的 位置原则,“用乘数个位上的数去算”就是求3个24得72,所以又要和乘数3对齐写在个位上。“用乘数十位上 的数去乘,就是求10个24个得240,(也可看成24个10)所以4要写在十位上”,从而帮助学生理解数位对齐的 道理。这样,通过反复训练,就能使学生在理解的基础上掌握法则。 三、思维训练是核心 “数学是思维的体操”。要教学生学会,并促进会学,就“要重视学生获取知识的思维过程。”计算教学 同样要以培养学生思维能力为核心,重视并加强思维训练。 教学大纲指出:“小学数学教学要使学生既长知识,又长智慧。”“要把发展智力和培养能力贯穿在各年 级教学的始终。”如何加强思维训练呢? 提供思路,教给思维方法。 过去计算教学以“算”为主,学生没有“说”的机会。现在稍为重视“说”的训练,但缺乏说的指导。因 此必须给学提供思路,教给思维方法。如在教第六册混合运算74+100÷5×3时,可引导学生复习混合运算顺序 ,然后叫学生结合例题思考,并用符号勾画出运算顺序,让学生说出:这道题里有几种运算方法,先算什么, 再算什么。使学生沿着图示指引的思路,按顺序、有条理的思考和回答问题。可引导学生这样说:这道题有加 法、除法和乘法,先算100除以5的商,再乘以3的积,最后求74与积的和。从而培养学生思维的条理性,促进思 维能力的发展。 (附图 {图}) 加强直观,重视操作,演示,培养学生形象思维能力。 思维是在直观的基础上形成表象,概念,并进行分析、综合、判断、推理等认识活动的过程中不断发展起 来的,在操作时要让学生看懂,并把操作和语言表述紧密结合起来,才能发展学生的思维。如第一册在20以内 的进位加法中配合直观操作,突出计算规律的教学,让学生体会“凑十”过程,边动手,边思考,用操作帮助 思维,用思维指挥操作,培养学生的思维能力。 探求合理、灵活的算法,培养思维的灵活性。 在学生掌握基本算法的基础上,引导学生通过观察和思考,探求合理、灵活的算法,尽快找到计算捷径, 形成灵活多变的计算技能。如:根据0和1在计算中的特征,在掌握简便算法的基础上可进行口算。象240×300 110×60。又如102与78相乘积是多少?(九义七册60页)可引导学生探究:102×78-(100+2)×78=7800+156 =7956。从而培养学生思维的灵活性。 重视估算,准确判断,培养学生的直觉思维。 在估算教学中,要认真引导学生观察,分析、进行准确判断,培养学生的直觉思维。如693扩大8倍大约得 多少(七册64页)?693×8应等于5544。要学生用估算的方法检查积的最高位有没有错误,首先要引导学生认 真观察,准确判断,693接近700,用700×8等于5600,693小于700,积小于5600是正确的。从而培养学生的直 觉思维能力。 四、培养认真、刻苦的学习态度和良好的计算习惯是根本 培养学生认真、严格、刻苦的学习态度和良好的计算习惯是大纲的要求,也是加强素质教育的重要内容。 大量事实说明,缺乏认真的学习态度和良好的学习习惯,是学生计算上造成错误的重要原因之一。因此,要提 高学生的计算能力,必须重视良好计算习惯的培养,使学生养成严格、认真、一丝不苟的学习态度和坚韧不拔 、勇于克服困难的精神,千万不要用“一时粗心”来原谅学生计算中出现的差错。那么要培养哪些习惯呢? 校对的习惯。计算都要抄题,要求学生凡是抄下来的都校对,做到不错不漏。 审题的习惯。这是计算正确、迅速的前题。一要审数字和符号,并观察它们之间有什么特点,有什么内 在联系。二要审运算顺序,明确先算什么,后算什么。三要审计算方法的合理、简便,分析运算和数据的特点 ,联系运算性质和定律,能否简算,不能直接简算的可否通过分、合、转换、省略等方法使运算简便,然后才 动手解题。 养成仔细计算、规范书写的习惯。要求按格式书写,字迹端正、不潦草,不涂改、不粘贴,保持作业的 整齐美观。 养成估算和验算的习惯。这是计算正确的保证。验算是一种能力,也是一种习惯。首先要掌握好验算和 估算的方法;其次要把验算作为计算过程的重要环节来严格要求;再次要求学生切实掌握用估算来检验答案的 正确程度。 五、加强训练是途径 计算能力是通过有目的、有计划、有步骤地长期训练逐步形成的。训练时要注意: 突出重点。如万以内的加减法,练习的重点是进位和退位。要牢记加进位数和减退位数,难点是连续进 位和退位;两三位数的乘法要练习第二、第三部分积的对位;小数的计算则注意小数点位置的处理,加、减、 除法强调小数点对齐,注意用"0"占位;简便运算则重点练习运用定律、性质和凑整。因此,在组织训练时必须 明确为什么练,练什么,要求达到什么程度,只有这样才能收到事半功倍的效果。 打好基础。教学大纲指出:“要重视基本的口算训练。”口算既是笔算、估算和简算的基础,也是计算 能力的重要组成部分。因此要求学生在理解的基础上掌握口算方法,根据各年级对计算的要求,围绕重点,组 织一系列的有效训练,持之以恒,逐步达到熟练。凑整的训练一定要加强,如:74+26=100,63+37=100,252+ 748=1000,25×4=100,125×8=1000等,要教给学生迅速观察,判断、凑整的能力。这些要求到了中、高年级 也不应忽略。同时要加强乘、加的口算训练,如两位数乘三位数176×47(九义六册11页),当用7去乘被乘数 的十位时,还要加上6×7进上来的"4",所以"7×7+4"这类的口算必须在教学之前加以训练。除数是两位数,商 是二、三位数的除法,试商是难点,如果两位数乘以一位数的口算不过关,试商就困难。估算能力不强,试商 也直接受到影响。到了高年级一些常用的口算,如14×2,14×3……以及除数 1 1 1 1 是5,25的乘、除法,——、——、——、——……化成小数是多 2 4 5 8 少以及同数相减得0等,这些也要作为基本口算常抓不懈。 掌握简便运算的方法。这是一种特殊形式的口算。简算的基础是运算性质和运算定律,因此,加强这方 面的训练是很重要的。在小学四则运算中,几种常用的简算方法学生必须掌握,从而达到提高计算速度的要求 。 训练要有层次,由浅入深,由简单到复杂。训练形式要多样化,游戏、竞赛等更能激发学生训练的热情 ,维持训练的持久性,收到良好的效果。