justenxy
数学本科毕业论文--数学教学与学生创造思维能力的培养摘 要:现代高科技和人才的激烈竞争,归根结底就是创造性思维的竞争,而创造性思维的实质就是求新、求异、求变。在数学教学中培养学生的创造思维、激发创造力是时代对我们提出的基本要求。怎样培养学生的创造思维能力:1、指导观察2、引导想象3、鼓励求异4、诱发灵感关键词:创造 思维前 言:在竞争日益激烈的当今社会,如何让在学校里学习的学生提前适应社会的发展,使他们能够顺利地成长,是学校、家庭和社会所面临的一个重要问题,本文就在数学教学中如何培养学生的创造思维能力提出自己的一些看法 现代高科技和人才的激烈竞争,归根结底就是创造性思维的竞争,而创造性思维的实质就是求新、求异、求变。创新是教与学的灵魂,是实施素质教育的核心;数学教学蕴含着丰富的创新教育素材,数学教师要根据数学的规律和特点,认真研究,积极探索培养和训练学生创造性思维的原则、方法。在数学教学中培养学生的创造思维、激发创造力是时代对我们提出的基本要求。本文就创造思维及数学教学中如何培养学生创造思维能力谈谈自己的一些看法。一、 创造思维及其特征思维是具有意识的人脑对客观事物的本质属性和内部规律性的概括的间接反映。创造思维就是合理地、协调地运用逻辑思维、形象思维及直觉思维等多种思维方式,使有关信息有序化,以产生积极的效果或成果。数学教学中所研究的创造思维,一般是指对思维主体来说是新颖独到的一种思维活动。它包括发现新事物、提示新规律、建立新理论、创造新方法、获得新成果、解决新问题等思维过程,尽管这种思维结果通常并不是首次发现或超越常规的思考。创造思维是创造力的核心。它具有独特性、新颖性、求异性、批判性等思维特征,思考问题的突破常规、新颖独特和灵活变通是创造思维的具体表现,这种思维能力是正常人经过培养可以具备的。二、 创设适宜的教学环境教师必须用尊重、平等的情感去感染学生,使课堂充满民主、宽松、和谐的气氛,只有这样学生才会热情高涨,才能大胆想象、敢于质疑、有所创新,这是培养学生创造性思维能力的重要前提。1、教育创新是教师的职责。教师应该深入钻研教材,挖掘教材本身蕴藏的创造因素,对知识进行创造性的加工,使课堂教学有创造教育的内容。例如教学轴对称图形时,提出“在河边修一个水塔,使到陈村、李庄所用的水管长度最少,如何选定这个水塔的位置?”从而把课本内容引申到实际生活中来,使教学富有实践性、科学性、现代性。突出学生的“主体”地位。要发扬教学民主,尊重学生中的不同观点,保护学生中学习争辩的积极性,让学生敢于想象,敢于质疑,敢于标新立异,敢于挑战权威,给每个学生发表自己见解的机会,最大限度地消除学生的心理障碍,形成学生主动学习,积极参与的课堂教学氛围,处理学生学习行为时,尊重他们的想法,鼓励别出心裁等。三、 怎样培养学生的创造思维能力1、指导观察观察是信息输入的通道,是思维探索的大门。敏锐的观察力是创造思维的起步器。可以说,没有观察就没有发现,更不能有创造。儿童的观察能力是在学习过程中实现的,在课堂中,怎样培养学生的观察力呢?首先,在观察之前,要给学生提出明确而又具体的目的、任务和要求。其次,要在观察中及时指导。比如要指导学生根据观察的对象有顺序地进行观察,要指导学生选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等。第三,要科学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。第四,要努力培养学生浓厚的观察兴趣。如学习《三角形的认识》,学生对“围成的”理解有困难。教师可让学生准备10厘米、16厘米、8厘米、6厘米的小棒各一根,选择其中三根摆成一个三角形。在拼摆中,学生发现用10、16、8厘米,10、8、6厘米和10、16、6厘米都能拼成三角形,当选16厘米、8厘米、6厘米长的三根小棒时,首尾不能相接,不能拼成三角形。借助图形,学生不但直观的感知了三角形“两边之和不能小于第三边”,而且明白了“三角形”不是由“三条线段组成”的图形,而应该是由“三条线段围成”的图形,使学生对三角形的定义有了清晰的认识。因此,在概念的形成中教师要努力创造条件,给学生提供自主探索的机会和充分的思考空间,让学生在观察、操作、实验、归纳和分析的过程中亲自经历概念的形成和发展过程,进行数学的再发现、再创造。2、引导想象想象是思维探索的翅膀。爱因斯坦说:"想象比知识更重要,因为知识是有限的,而想象可以包罗整个宇宙。"在教学中,引导学生进行数学想象,往往能缩短解决问题的时间,获得数学发现的机会,锻炼数学思维。想象不同于胡思乱想。数学想象一般有以下几个基本要素。第一,因为想象往往是一种知识飞跃性的联结,因此要有扎实的基础知识和丰富的经验的支持。第二,是要有能迅速摆脱表象干扰的敏锐的洞察力和丰富的想象力。第三,要有执着追求的情感。因此,培养学生的想象力,首先要使学生学好有关的基础知识。其次,新知识的产生除去推理外,常常包含前人的想象因素,因此在教学中应根据教材潜在的因素,创设想象情境,提供想象材料,诱发学生的创造性想象。如在学习《平行四边形的面积》时,教师利用多媒体呈现学生熟悉的情景:种植园里各种植物郁郁葱葱,分别种在划成不同形状的地块上。然后出示种有竹子和杜鹃的地块,分别呈正方形和长方形,要求算一算它们的种植面积,学生运用已学的知识很快解决了问题。接着出示一块形如平行四边形的青菜地,让学生猜一猜它的面积大概是多少?平行四边形的面积应怎么求?学生对未知领域的探索有天然的好奇,思维的积极性被激发,纷纷根据前面的知识作出如下猜测:①、面积是长边和短边长度的积。②、长边和它的高的积。③、短边和它的高的积。④、先拼成一个长方形,跟这个长方形的面积有关……教师一一板书出来,学生见自己的思维结果被肯定,心理上有一种小小的成就,从而更激起了主动探索的欲望。3、鼓励求异求异思维是创造思维发展的基础。它具有流畅性、变通性和创造性的特征。求异思维是指从不同角度,不同方向,去想别人没想不到,去找别人没有找到的方法和窍门。要求异必须富有联想,好于假设、怀疑、幻想,追求尽可能新,尽可能独特,即与众不同的思路。课堂教学要鼓励学生去大胆尝试,勇于求异,激发学生创新欲望。学起于思,思源于疑,疑则诱发创新。教师要创设求异的情境,鼓励学生多思、多问、多变,训练学生勇于质疑,在探索和求异中有所发现和创新。本人教授“§7平行线的性质”一节时深有感触,一道例题最初是这样设计的:例:如图,已知a // b , c // d , ∠1 = 115, ⑴ 求∠2与∠3的度数 ,1abcd⑵ 从计算你能得到∠1与∠2是什么关系? 2学生很快得出答案,并得到∠1=∠2。我正要向下讲解,这时一位同学举手发言:“老师,不用知道∠1=115°也能得出∠1=∠2。”我当时非常高兴,因为他回答了我正要讲而未讲的问题,我让他讲述了推理的过程,同学们报以热烈的掌声。我又借题发挥,随之改为:已知:a//b , c//d 求证: ∠1=∠2让学生写出证明,并回答各自不同的证法。随后又变化如下:变式1:已知a//b , ∠1=∠2 , 求证:c//d。变式2:已知c//d ,∠1=∠2 , 求证:a//b。变式3:已知a//b, 问∠1=∠2吗?(展开讨论)这样,通过一题多证和一题多变,拓展了思维空间,培养学生的创造性思维。对初学几何者来说,有利于培养他们学习几何的浓厚兴趣和创新精神。数学教学中,发展创造性思维能力是能力培养的核心,而逆向思维、发散思维和求异思维是创新学习所必备的思维能力。数学教学要让学生逐步树立创新意识,独立思考,这应成为我们以后教与学的着力点。 4、诱发灵感灵感是一种直觉思维。它大体是指由于长期实践,不断积累经验和知识而突然产生的富有创造性的思路。它是认识上质的飞跃。灵感的发生往往伴随着突破和创新。在教学中,教师应及时捕捉和诱发学生学习中出现的灵感,对于学生别出心裁的想法,违反常规的解答,标新立异的构思,哪怕只有一点点的新意,都应及时给予肯定。同时,还应当运用数形结合、变换角度、类比形式等方法去诱导学生的数学直觉和灵感,促使学生能直接越过逻辑推理而寻找到解决问题的突破口。 例如,有这样的一道题:把3/7、6/13、4/9、12/25用">"号排列起来。对于这道题,学生通常都是采用先通分再比较的方法,但由于公分母太大,解答非常麻烦。为此,我在教学中,安排学生回头观察后桌同学抄的题目(7/3、13/6、9/4、25/12),然后再想一想可以怎样比较这些数的大小,倒过来的数字诱发了学生瞬间的灵感,使很多学生寻找到把这些分数化成同分子分数再比较大小的简捷方法。 总之,人贵在创造,创造思维是创造力的核心。培养有创新意识和创造才能的人才是中华民族振兴的需要,让我们共同从课堂做起。结束语:学生的创造思维能力如何培养如何提高是学校教学工件新的难题,以上仅代表本人的观点,不足之处请大家指正。该篇论文的完成得到了各方面的支持,在此谨表示最真诚的感谢,谢谢! 
在小学数学教学中,提高学生学习数学的兴趣,培养良好的学习习惯,培养学生的逻辑思维能力、运算能力、空间想象能力和解决简单实际问题的能力是实施素质教育重要前提条件。真正做到授人以渔而不是授人以鱼,为学生将来的学习奠定基础。新课标确立了知识与技能、过程与方法、情感态度与价值观三纬一体的课程目标,将素质教育的理念体现在课程标准之中,通过引导学生主动参与、亲身实践、独立思考、合作探究,从而实现学习方式的转变,发展学生搜集信息、处理信息、获取新知、分析解决问题、合作交流的能力。那么,教师怎样通过明理启发、诱导,培养学生的思维能力,就此谈谈一些教学体会。一、激发小学生的学习兴趣,引发数学思维。大教育家赞科夫说:“在各科教学中要始终注意发展学生的逻辑思维,培养学生的思维灵活性和创造性。”大家都说:“兴趣是最好的老师。”这些都是站在自身的立场上来阐明思维与兴趣的重要性,这是把思维与兴趣分开来看。如果把思维和兴趣这两者结合起来,将会达到更加完美的效果。随着教育教学改革的深入发展,在数学教学中如何有目的、有计划、有步骤地培养学生的思维能力,是每一个数学教师十分关心的问题。教师应吃透教材,把握教材中的智力因素,积极地进行教学。数学教学中激发学生的学习兴趣是非常重要的环节之一。从心理学角度看,如何抓住学生的某些心理特征,对教学将起到一个巨大的推动作用。兴趣的培养就是一个重要的方面,兴趣能激发大脑组织,有利于发现新事物和事物的新要素,并进行积极探索创造。兴趣是学生学习的最佳营养和催化剂。学生对学习有兴趣,对学习材料的反映也就最清晰。思维活动是最积极有效的,它能使学习达到事半功倍的效果。那么,怎样激发学生的数学思维兴趣,调动数学思维的积极性呢?1、利用演示、操作。演示可把图由静变动,能更好吸引学生的注意,起到直观的效果;操作是一种辅助的教学手段,恰当运用直观操作,师生互动,让学生运用多种感官参与学习。这样,既提高了学生学习数学兴趣,又增强了思维能力。2、保护好小学生的学习好奇心。好奇心是对所发生的新异事物感到惊奇,引发疑问,进行探究的心理倾问,它也能激发学生强烈的求知欲和浓厚的学习兴趣,有助于点燃思维的火花。3、克服以教师思维代替学生思维、教师讲、问牵着学生听、答的教学现象。要为学生留出足够的思维活动的空间,让学生利用自己的学习方式,在已有的生活经验和认知结构的基础上,自己动手、动脑、动口,在活动探究中发挥创造性,进行自主的建构。4、考虑到学生现有心理水平,按照维果茨基的最近发展区原理,为学生创造一定问题情境,是引发学生思维活动的外部环境因素。古人云:“学起于思,思源于疑”。有疑才能引发学生的求知欲,才能使他们处于积极主动的状态。在教学时通过谈话、设问、提问、实验等各种方法,创设一定的问题情境,可以调动学生参与学习活动的积极性,引起学生主动观察和思考的兴趣。二、以具体的感性材料为基础,逐步提高,促进学生的思维能力。在数学基础知识教学中,加强对定义、法则、定律等的教学,这同时也是对学生进行初步的逻辑思维能力培养的重要手段。但是这方面的教学内容比较抽象,学生年龄小,生活经验不足,抽象能力较差,学习吃力等原因,因而我们只是重视了“算”而忽视了这样一个抽象思维训练的机会。小学生学习抽象的知识,是在感性认识的基础上而产生质的飞跃,感知认识是学生理解知识的基础,具体形象是数学抽象思维的有效途径和重要信息来源。在平时的日常教学中,我们应注意由具体到抽象,逐步提高培养学生的抽象思维的能力。如,在教学“圆的认识”时,先用学生在现实生活中遇到的圆形的物体举例,使学生认识圆与其它平面图形的不同之处,但如何画圆,老师不亲自示范,就让学生自己大胆尝试想法设法。“你们会画出标准的圆形吗?看谁的方法最好最多?”这样,学生学习的好奇心、积极性充分调动起来了,人人动手、动脑,很快,大部分学生知道并学会用圆规及借助圆形物体(如墨水瓶、茶杯盖、硬币等)画圆的方法。这时候,老师及时表扬他们主动动手参与、积极探索,然后再问:“如果要建设一个圆形大花坛或者大水池,能用圆规画出来吗?”这样又进一步激励了学生,他们争先恐后地投入思考动手实践中。通过实践操作,终于又发现了用标杆和绳子可以画较大的圆。多种形式的评价、鼓励、激励思维也很重要。学生个体思维水平因人而异采取不同的评价方式,借助各自思维的“亮点”进行激励,不使任何一个学生的思维火花因评价不当而熄灭。三、 精心设计教学内容,培养学生的数学思维迁移能力这一点不仅要求老师要有过硬的专业知识,善于发现教材中所隐含的深意,还要将拓展意识运用到数学课上。例如涉及到语文知识,可以多讲一些与其相关的课外知识,让学生们理解到各学科之间的联系,学会融会贯通,从真正意义上产生对知识的渴望。 因此培养学生学习数学的求异思维和立体思维至关重要。1、求异思维。对于小学生而言,既要培养他们不盲从,喜欢质疑,打破框框,大胆发表自己意见的品质,又要培养他们敢于求“异”,发展他们的求异思维,进而养成独立思考独立解决问题的习惯。如,一位教师在教学“乘法意义”的运用一课时,出示了这样一道加法题:7+7+7+5+7=?让学生用简便方法计算。于是一个学生提出了7×4+5的方法,而另一个学生则提出了“新方案”,建议用7×5-2的方法解。这个学生的思维有创见,这个方案是他自己发现的。在他的思维活动中,他“看见了”一个实际并不存在的7,他假设在5的位置上是一个7,那么就可以把题目先假设为7×5。接着他的思维又参与了论证:7-2才是原题中的实际存在的5。对于这种在别人看不到的问题中发现问题和提出问题,这种创造性思维的突现,我们要倍加珍惜和爱护。2、立体思维 。一题多解是学生产生浓厚学习兴趣的基础,也是培养学生数学立体思维能力的重要源泉。如,一辆摩托车上午3小时行驶了5千米,照这样计算,下午又行驶2小时,这一天共行驶了多少千米?第一解法先求出平均l小时行驶多少千米,然后求出下午行驶多少千米,最后求出这一天行驶多少千米。综合算式是5÷3×2+5=5(千米)。第二种方法相对比较简便一些,先求出一天共行驶了多少小时,再求出平均每小时行驶多少千米,最后再求出一天共行驶多少千米。综合算式是:5÷3×(3+2)=5(千米)。以上两种方法都很普通,这里还有一种新的解法,算式为:5×2-5÷3=5(千米)。其中,5×2,表示行驶6小时的千米数,5÷3,表示平均l小时行驶的千米数;最后用6小时行驶的千米数减去1小时行驶的千米数,就是这一天5小时行驶的千米数了。这便是一种创新的解法。3、发散思维。学生的思维有时会出现“卡顿”的现象,这就是思维的障碍点,此时教学适时地加以疏导、点拨,促使学生思维转折,并以此为契机促进学生思维发展。例如:甲乙两人共同加工一批零件,计划甲加工的零件个数是乙加工的2/5。实际甲比计划多加工了34个,正好是乙加工零件个数的7/9。这批零件共有多少个?学生在思考这道题时,虽然能够准确地判断出2/5和7/9这两个分率都是以乙加工的零件个数为标准量的,但是,这两个标准量的数值并不相等,这样,学生的思维出现障碍。教师应及时抓住这个机会,引导学生开拓思路:“甲加工的零件个数是乙的2/5”,这说明甲、乙计划加工零件的个数是几比几?“正好是乙加工零件个数的7/9”又说明甲、乙实际加工零件个数是几比几?这样,就将以乙标准量的分率关系转化为以总个数为标准量的分率关系,直至解答出这道题。在这个过程中,教师引导学生由分数联想到比的过程,实际就是学生思维发生转折的过程。抓住这个转折点,有利于克服学生的思维障碍,有利发散思维的培养。因此,在数学教学的过程中,教师要特别注意培养学生根据题目中的具体条件,灵活地运用数学方法,通过变换角度思考问题。这样,就可以发现新方法,制定新策略,长期坚持这样的方法训练,学生一定能产生较强的数学创新思维能力。数学是一门逻辑性、抽象性、系统性很强的学科。如何使小学生的数学基本思维能力得到发展,这将是我们数学教师长期的有意识的教学目标。在教学中,提高学生的学习能力,培养学生的思维意识,多给点思考的机会,多方面培养学生的思维品质,必将成为我们数学教师努力的方向。 让我们给学生一片广阔的天地,给他们一个自由发挥的空间,让他们乐学、好学普学,让他们的数学思维能力在课堂学习中得到充分的发展!