彩虹海
目前,不少医学论文中的统计分析存在较多的问题。有报道,经两位专家审稿认为可以发表的稿件中,其统计学误用率为90%-95%。为帮助广大医务工作者提高统计分析水平,本文将介绍医学论文中常用统计分析方法的选择原则及应用过程中的注意事项。 检验t检验是英国统计学家WSGosset 1908年根据t分布原理建立起来的一种假设检验方法,常用于计量资料中两个小样本均数的比较。理论上,t检验的应用条件是要求样本来自正态分布的总体,两样本均数比较时,还要求两总体方差相等。但在实际工作中,与上述条件略有偏离,只要其分布为单峰且近似正态分布,也可应用 
统计是要分析数据的,但首先需要考察的是,数据的是否合适,实验采集的数据是否符合分析的目的和要求。 所谓实验设计就是指设计实验的合理程序,使得收集得到的数据符合统计分析方法的要求,以便得出有效的客观的结论。它主要适用于自然科学研究和工程技术领域的统计数据搜集。 实验设计要遵循的三个基本原则: (1)重复性原则:即允许在相同条件下重复多次实验。好处是:其一可以获得更加精确的有效估计量;其二,可以获得实验误差的估计量。这些都是提高估计精度或缩小误差范围所需要的。 (2)随机化原则:是指在实验设计中,对实验对象的分配和实验次序都是随机安排的。是实验设计的重要原则。 (3)区组化原则:即利用类型分组技术,对实验对象按有关标志顺序排除,然后依次将各单位随机地分配到各处理组,使各处理组组内标志值的差异相对扩大,而处理组组间的差异相对缩小,这种实验设计安排称为随机区组设计。 2.大量观察 大量观察法是统计学所特有的方法。所谓大量观察法,是指对所研究的事物的全部或足够数量进行观察的方法。统计描述 统计描述是指对由实验或调查而得到的数据进行登记、审核、整理、归类、计算出各种能反映总体数量特征的综合指标,并加以分析,从中抽出有用的信息,用表格或图像把它表示出来。是统计研究的基础。它通过对分散无序的原始资料的整理归纳,运用分组法和综合指标法得到现象总体的数量特征,揭露客观事物内在数量规律性,达到认识的目的。
常用统计方法:1、统计表(单式和复式)。2、统计图(条形、折线、扇形)。
科学研究很早就已经从简单的定性分析深入到细致的定量分析,科研工作者要面对大量的数据分析问题,科研数据的统计分析结果直接影响着论文的结果分析。在医学科研写作中,实验设计的方法直接决定了数据采取何种统计学方法,因为每种统计方法都要求数据满足一定的前提和假定,所以论文在实验设计的时候,就要考虑到以后将采取哪种数据统计方法更可靠。医学统计方法的错误千差万别,其中最主要的就是统计方法和实验设计不符,造成数据统计结果不可靠。下面,医刊汇编译列举一些常见的可以避免的问题和错误:打开百度APP,查看更多高清图片一、数据统计分析方法使用错误或不当。医学论文中,最常见的此类错误就是实验设计是多组研究,需要对数据使用方差分析的时候,而作者都采用了两样本的均数检验。二、统计方法阐述不清楚。在同一篇医学论文中,不同数据要采取不同统计处理方法,这就需要作者清楚地描述出每个统计值采用的是何种统计学方法,但在许多使用一种以上数据统计分析方法的医学论文中,作者往往只是简单地把论文采用的数据统计方法进行了整体罗列,并没有对每个数据结果分析分别交代具体的统计方法,这就很难让读者确认某一具体结果作者到底采用的是何种数据分析方法。三、统计表和统计图缺失或者重复。统计表或者统计图可以直观地让读者了解统计结果。一个好的统计表或统计图应该具有独立性,即作者即使不看文章内容,也可从统计表或统计图中推断出正确的实验结果。而一些医学论文只是简单地堆砌了大量的统计数字,缺乏直观的统计图或表;或者虽然也列出了统计表或统计图,但表或图内缺项很多,让读者难以从中提取太多有用的信息。另外,也有作者为了增加文章篇幅,同时列出统计表和统计图,造成不必要的浪费和重复。统计表的优点是详细,便于分析研究各类问题。统计图(尤其是条形统计图)的优点是能够直观反映变量的数量差异。医学论文中对数据统计结果的解释,最常见的两个错误就是过度信赖P值(结果可信程度的一个递减指标)和回避阴性结果。前一个错误的原因是因为一些作者对P值含义理解有误,把数据的统计学意义和研究的临床意义混淆。所以医学研究人员一定要注意不能单纯依靠统计值武断地得出一些结论,一定要把统计结果和临床实践结合在一起,这样才会避免出现类似的错误。至于回避阴性结果,只提供阳性结果,是因为不少作者在研究设计时,难以摆脱的一种单向的思维定式就是主观地先认定自己所预想的某种结果结论。在归纳某种结果原因时,从一个方向的实验就下完美的结论,尤其是如果这个结论可能对实际情形非常有意义时。这样的思维定势过于强调统计差异的显著性,有时会刻意回避报道差异的不显著结果,不思考和探究差异不显著的原因和意义,反而会因此忽视一些重大的科学发现。
1、大量观察法这是统计活动过程中搜集数据资料阶段(即统计调查阶段)的基本方法:即要对所研究现象总体中的足够多数的个体进行观察和研究,以期认识具有规律性的总体数量特征。2、统计分组法由于所研究现象本身的复杂性、差异性及多层次性,需要我们对所研究现象进行分组或分类研究,以期在同质的基础上探求不同组或类之间的差异性。3、综合指标法统计研究现象的数量方面的特征是通过统计综合指标来反映的。所谓综合指标,是指用来从总体上反映所研究现象数量特征和数量关系的范畴及其数值,常见的有总量指标、相对指标,平均指标和标志变异指标等。4、统计模型法在以统计指标来反映所研究现象的数量特征的同时,我们还经常需要对相关现象之间的数量变动关系进行定量研究,以了解某一(些)现象数量变动与另一(些)现象数量变动之间的关系及变动的影响程度。5、统计推断法在统计认识活动中,我们所观察的往往只是所研究现象总体中的一部分单位,掌握的只是具有随机性的样本观察数据,而认识总体数量特征是统计研究的目的,这就需要我们根据概率论和样本分布理论,运用参数估计或假设检验的方法,由样本观测数据来推断总体数量特征。扩展资料统计学的萌芽最初在当时欧洲经济发展较快的意大利孕育良久,但最终却在17世纪的德国首先破土成芽,国势学派又称记述学派,产生于17世纪的德国。由于该学派主要以文字记述国家的显著事项,故称记述学派。其主要代表人物是海尔曼·康令和阿亨华尔。阿亨华尔在格丁根大学开设“国家学”课程,其主要著作是《近代欧洲各国国势学纲要》,书中讲述“一国或多数国家的显著事项”,主要用对比分析的方法研究了解国家组织、领土、人口、资源财富和国情国力,比较了各国实力的强弱,为德国的君主政体服务。因在外文中“国势”与“统计”词义相通,后来正式命名为“统计学”。该学派在进行国势比较分析中,偏重事物性质的解释,而不注重数量对比和数量计算,但却为统计学的发展奠定了经济理论基础。但随着经济的发展,对事物量的计算和分析显得越来越重要,该学派后来发生了分裂,分化为图表学派和比较学派。参考资料来源:百度百科-统计学