0826Rtuo
传感器原理及应用,1分钟带你了解,看完你就明白了 
热释电效应某些绝缘物质受热时,随着温度的上升,在晶体两端将会产生数量相等而符号相反的电荷。这种由于热变化而产生的电极化现象称为热释电效应。热释电效应在近十年被用于热释电红外传感器中。能产生热释电效应的晶体称为热释电体,又称为热电元件。热电元件常用的材料有单晶、压电陶瓷及高分子薄膜等。 热释电红外传感器的结构热释电红外传感器由以下四个主要部分构成: ①构成电路的铝基板、场效应晶体管(FET); ②具有热释电效应的陶瓷材料; ③ 限制入射红外波长的窗口材料; ④ 外壳TO—5型管帽和管座。 由于探测器元件单独使用时,存在着探测距离较短、获得的信号后续电路不易处理的不足,所以目前多选用红外组合件来探测。红外组合件由热释电红外传感器、透镜、测量转换电路和密封管壳构成]。透镜可以扩大探测范围,提高测量的灵敏度;测量转换电路可以完成滤波、放大等信号处理过程;密封管壳能防止因外界噪声引起的错误动作。这种组合件体积小、成本低、功能多样,所以应用广泛。以上信息参考工控网
朋友要分6个部分写:引言 随着现代科学技术的发展,小区可视对讲系统集成度越来高,首先实现了多门口机多管理机系统,接着集成了安防报警、小区服务及信息发布等功能。对讲系统的数字化、网络化、信息化、智能化是楼宇监控今后发展的方向,而对小区可视对讲系统底层网络的研究和实现是进一步提高小区智能化系统各项性能的关键。小区可视对讲系统中的控制网络总线技术 小区可视对讲系统在向综合安全防范系统发展,功能包括访客可视对讲、住宅门窗安防、紧急呼叫、异常自动报警、出入口管理和信息服务等,要实现这些功能关键是控制网络的技术特性。目前可视对讲中控制网络常用的总线有Lonworks总线、CAN(Controller Area Network)总线及RS-485总线[1,2,3]等。CAN+RS458控制网络的提出 3。本文设计的小区可视对讲系统底层网络模型,采用了“CAN+RS485”总线的分层结构。考虑到可视对讲底层网络的主干通道要求传输较大数据量的信息,而CAN总线在有较大数据容量系统网络方面的应用有较强的处理能力和优势,所以CAN总线是构成小区智能化系统底层网络的较好解决方案之一。CAN+RS458控制网络的改进 对于CAN+RS458控制网络,由于CAN有硬件通信协议,其通信性能和效率基本已经稳定,而RS-485的通信协议只能依靠软件支持,同时RS-485的网络控制能力不强,因此CAN+RS458控制网络的整体性能与RS-485网络性能的开发和利用有密切关系。 对于RS-485多机通信模式,一般采用的是主从式多机通信本设计的改进之处在于采用另一种多机 通信方式——对等式多机通信。 CAN+RS458控制网络的实现 小区可视对讲系统最大的意义是为住户提供一个先进、方便、安全、舒适的环境小结 本文在研究CAN总线和RS-485总线的基础上,结合小区可视对讲系统需要实现的功能,设计并改进了“CAN+RS485”底层网络,实现了小区安全报警与远程传输的控制系统网络。该控制网络将能够更有效的满足构建低廉、可靠的小区可视对讲系统,实现小区安全防范、信息采集的要求。
可以用不同的观点对传感器进行分类: 它们的转换原理(传感器工作的基本物理或化学效应);它们的用途;它们的输出信号类型以及制作它们的材料和工艺等。 根据传感器工作原理,可分为物理传感器和化学传感器二大类 : 传感器工作原理的分类物理传感器应用的是物理效应,诸如压电效应,磁致伸缩现象,离化、极化、热电、光电、磁电等效应。被测信号量的微小变化都将转换成电信号。 化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,被测信号量的微小变化也将转换成电信号。 有些传感器既不能划分到物理类,也不能划分为化学类。大多数传感器是以物理原理为基础运作的。化学传感器技术问题较多,例如可靠性问题,规模生产的可能性,价格问题等,解决了这类难题,化学传感器的应用将会有巨大增长。 常见传感器的应用领域和工作原理列于下表。1、传感器按照其用途分类: 压力敏和力敏传感器 位置传感器 液面传感器 能耗传感器 速度传感器 加速度传感器 射线辐射传感器 热敏传感器 24GHz雷达传感器2、传感器按照其原理分类: 振动传感器 湿敏传感器 磁敏传感器 气敏传感器 真空度传感器 生物传感器等。3、传感器按照其输出信号为标准分类: 模拟传感器——将被测量的非电学量转换成模拟电信号。 数字传感器——将被测量的非电学量转换成数字输出信号(包括直接和间接转换)。 膺数字传感器——将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换)。 开关传感器——当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号。4、传感器按照其材料为标准分类: 在外界因素的作用下,所有材料都会作出相应的、具有特征性的反应。它们中的那些对外界作用最敏感的材料,即那些具有功能特性的材料,被用来制作传感器的敏感元件。从所应用的材料观点出发可将传感器分成下列几类: (1)按照其所用材料的类别分 金属 聚合物 陶瓷 混合物 (2)按材料的物理性质分: 导体 绝缘体 半导体 磁性材料 (3)按材料的晶体结构分: 单晶 多晶 非晶材料 与采用新材料紧密相关的传感器开发工作,可以归纳为下述三个方向: (1)在已知的材料中探索新的现象、效应和反应,然后使它们能在传感器技术中得到实际使用。 (2)探索新的材料,应用那些已知的现象、效应和反应来改进传感器技术。 (3)在研究新型材料的基础上探索新现象、新效应和反应,并在传感器技术中加以具体实施。 现代传感器制造业的进展取决于用于传感器技术的新材料和敏感元件的开发强度。传感器开发的基本趋势是和半导体以及介质材料的应用密切关联的。表2中给出了一些可用于传感器技术的、能够转换能量形式的材料。5、传感器按照其制造工艺分类: 集成传感器 薄膜传感器 厚膜传感器 陶瓷传感器 集成传感器是用标准的生产硅基半导体集成电路的工艺技术制造的。通常还将用于初步处理被测信号的部分电路也集成在同一芯片上。 薄膜传感器则是通过沉积在介质衬底(基板)上的,相应敏感材料的薄膜形成的。使用混合工艺时,同样可将部分电路制造在此基板上。 厚膜传感器是利用相应材料的浆料,涂覆在陶瓷基片上制成的,基片通常是Al2O3制成的,然后进行热处理,使厚膜成形。 陶瓷传感器采用标准的陶瓷工艺或其某种变种工艺(溶胶-凝胶等)生产。 完成适当的预备性操作之后,已成形的元件在高温中进行烧结。厚膜和陶瓷传感器这二种工艺之间有许多共同特性,在某些方面,可以认为厚膜工艺是陶瓷工艺的一种变型。 每种工艺技术都有自己的优点和不足。由于研究、开发和生产所需的资本投入较低,以及传感器参数的高稳定性等原因,采用陶瓷和厚膜传感器比较合理。 (空侣网暖通专家提供)6、传感器根据测量目的不同分类 物理型传感器是利用被测量物质的某些物理性质发生明显变化的特性制成的。 化学型传感器是利用能把化学物质的成分、浓度等化学量转化成电学量的敏感元件制成的。 生物型传感器是利用各种生物或生物物质的特性做成的,用以检测与识别生物体内化学成分的传感器。
那你要是想要这个领域的文章,你直接去传感器技术与应用这本期刊上找吧,免费下载查阅的