期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    5

  • 浏览数

    166

herolsong
首页 > 期刊问答网 > 期刊问答 > 有关数学论文

5个回答 默认排序1
  • 默认排序
  • 按时间排序

小冉113

已采纳
晕啊,你们数学老师以前是不是教语文的啊!!!不过你可以上百度上找找看有理数、有理数的加减法、正负数、数轴、相反数、绝对值应该可以找到很多有用的,(*^__^*)嘻嘻……然后在组合一下就可以了

有关数学论文

235 评论(10)

map_boy

抽屉原理和六人集会问题 “任意367个人中,必有生日相同的人。” “从任意5双手套中任取6只,其中至少有2只恰为一双手套。” “从数1,2,,10中任取6个数,其中至少有2个数为奇偶性不同。” 大家都会认为上面所述结论是正确的。这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理。它的内容可以用形象的语言表述为: “把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。” 在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。 抽屉原理的一种更一般的表述为: “把多于kn个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。” 利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。 如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述: “把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。” 抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 1958年6/7月号的《美国数学月刊》上有这样一道题目: “证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。” 这个问题可以用如下方法简单明了地证出: 在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,,AF,它们的颜色不超过2种。根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。如果BC,BD,CD3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。不论哪种情形发生,都符合问题的结论。 六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论。这些结论构成了组合数学中的重要内容-----拉姆塞理论。从六人集会问题的证明中,我们又一次看到了抽屉原理的应用。
279 评论(13)

cookies_nb

自己网上去查一篇啊 而且悬赏分也没有
156 评论(10)

小瓶盖053

寒假中的一天,我和妈妈一起出去逛街。我们边走边商量,先去服装店买衣服,再去超市购物,最后回家。 街上产品琳琅满目,到处都热热闹闹,喜气洋洋。忽听一个高音喇叭广告,吸引了妈妈:清仓大处理!清仓大处理!买一送一!心动不如行动,大家快来买呀!……妈妈一听心动了,于是走进商场行动起来。这时我看见了在广告排的最后一行有几个较小的字,是这么一句话:“(注:送的衣服价格不超过买的衣服价格)”。虽然我感到很奇怪,但我还是跟着妈妈进去了,妈妈先挑中了一件黑色羽绒服给自己,需要204元,又挑了一件棉大衣给爸爸,需要169元,妈妈想也没想就付了钱,觉得挺合算,用204元就可以买到369元的东西。可我总觉得很奇怪,俗话说:“只有买亏,没有卖亏。”我边走边想:没有优惠时的总价是204+165=369元;平均每件只有369 ÷2=5元;把这个价格与羽绒服的价格对比一下:204元>5元 204-5=5元看来妈妈亏了5元这个结果还没加上成本与售价间的差距耶!看来商家永远是赚了!
283 评论(15)

gczy123

一位奥数老师说过这么一句话:学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了一条鱼,掌握了一种解题方法,就犹如拥有了一张网;所以,“学数学”与“学好数学”的区别就在与你是拥有了一条鱼,还是拥有了一张网。 数学,是一门非常讲究思考的课程,逻辑性很强,所以,总会让人产生错觉。 数学中的几何图形是很有趣的,每一个图形都互相依存,但也各有千秋。例如圆。计算圆的面积的公式是S=∏r2,因为半径不同,所以我们经常会犯一些错。例如,“一个半径为9厘米和一个半径为6厘米的比萨饼等于一个半径为15厘米的比萨饼”,在命题上,这道题目先迷惑大家,让人产生错觉,巧妙地运用了圆的面积公式,让人产生了一个错误的天平。 其实,半径为9厘米和一个半径为6厘米的比萨饼并不等于一个半径为15厘米的比萨饼,因为半径为9厘米和一个半径为6厘米的比萨饼的面积是S=∏r2=92∏+62∏=117∏,而半径为15厘米的比萨饼的面积是S=∏r2=152∏=225∏,所以,半径为9厘米和一个半径为6厘米的比萨饼是不等于一个半径为15厘米的比萨饼的。 数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。 记住,站在峰脚的人是望不到峰顶的。
353 评论(14)

相关问答