茉香绿茶
4本日记本和8本练习本的价钱相等。小明买3本日记本和5本练习本,共用去4元。日记本和练习本的单价各是多少元? 这道题我是这样想的:把‚4本日记本和8本练习本价钱相等‛换句话说,就是‚1本日记本和2本练习本价钱相等‛;再把它换句话说,就是‚3本日记本和6本练习本价钱相等‛,也就是说‚3本日记本可以换成6本练习本‛。题目中的第二个条件‚买3本日记本和5本练习本,共用去4元‛,换句话说就是‚买6本练习本和5本练习本,共用去4元‛。这样就可以先算出每本练习本的价钱是: 4÷(6+5)=4(元) 从而求出日记本的单价是:4×2=8(元)。 联系以前做过的一些题目,我又想,有些题中的已知条件可以用多种方法来说,解题时,把它换句话来说,可以使题目中的已知条件更加直接,数量关系更加一目了然,也就方便我们找到解题方法。我把这个想法告诉陈老师,陈老师肯定了我的想法,还告诉我:‚这就是转化的方法,转化就是把要解决的问题转化成已经会解决的问题。‛ 陈老师又给我出了一道题目: [题目2]一个两位小数,去掉小数点后比原来的数大46。这个两位小数是多少?我想:把‚一个两位小数去掉小数点‛换句话说就是‚把这个两位小数扩大100倍,得到一个新数‛。再想把原来的数看作1倍, 新数就是100倍,又可以把‚去掉小数点后比原来的数大46‛换句话说成‚原数的99倍等于46‛。这样要解决的问题就可以转化成:‚一个数的99倍是46,求这个数。‛ 46÷(100-1)=54 解题时,把已知条件‚换句话说‛,还真能化难为易! 最后,陈老师又给我出了一道题目:两个数相除的商是21,余数是3。如果把被除数、除数、商和余数相加,它们的和是225。被除数、除数各是多少 
急!!!!!!!!!!!!!!!!!!!!!!!!
打的过搞的广告费沟沟壑壑好尴尬飞飞哥vvv现代风格v不会太丰富非常v比较运费搭错车滚滚滚哈哈哈吃的
小熊的妈妈生病了,为了能挣钱替妈妈治病,小熊每天天不亮就起床下河捕鱼,赶早市到菜场卖鱼。一天,小熊刚摆好鱼摊,狐狸、黑狗和老狼就来了。小熊见有顾客光临,急忙招呼:“买鱼吗,我这鱼刚捕来的,新鲜着呢!”狐狸边翻弄着鱼边问:“这么新鲜的鱼,多少钱一千克?”小熊满脸堆笑:“便宜了,四元一j斤。”老狼摇摇头:“我老了,牙齿不行了,我只想买点鱼身。”小熊面露难色:“我把鱼身卖给你,鱼头、鱼尾卖给谁呢? ”狐狸甩甩尾巴道:“是呀,这剩下的谁也不愿意买,不过,狼大叔牙不好,也只能吃点鱼肉。这样吧,我和黑狗牙好,咱俩一个买鱼头,一个买鱼尾,不就既帮了狼大叔,又帮了你熊老弟了吗?” 小熊一听直拍手,但仍有点迟疑:"好倒好,可价钱怎么定?”狐狸眼珠一转,答道:“鱼身2元1斤,鱼头、鱼尾各1元1斤,不正好是4元1斤吗?”小熊在地上用小棍儿画了画,然后一拍大腿:“好,就这么办!”四人一齐动手,不一会儿就把鱼头、鱼尾、鱼身分好了,小熊一过秤,鱼身3斤6元;鱼头1斤1元,鱼尾1斤1元。老狼、狐狸和黑狗提着鱼,飞快地跑到林子里,把鱼头鱼身鱼尾配好,重新平分了,…… 小熊在回家的路上,边走边想:我5斤鱼按4元1斤应卖20元,可怎么现在只卖了8元……小熊怎么也理不出头绪来。你知道这是怎么一回事吗?
数学小论文:《容易忽略的答案》大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×5=5(千米),5+18=5(千米),5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×5=5(千米),5-18=5(千米),5×2=189(千米)。所以正确答案应该是:45×5=5(千米),5+18=5(千米),5×2=261(千米)和45×5=5(千米),5-18=5(千米),5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!!想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!