期刊问答网 论文发表 期刊发表 期刊问答

大学物理简谐振动论文

  • 回答数

    3

  • 浏览数

    201

sxsw001
首页 > 期刊问答网 > 期刊问答 > 大学物理简谐振动论文

3个回答 默认排序1
  • 默认排序
  • 按时间排序

卢文清

已采纳
液晶材料的分类、应用及其发展状况摘要介绍了液晶材料的种类及其分类性能,论述了液晶材料的应用和发展情况。关键词液晶材料;介晶相;应用液晶的简介和分类液晶是一些化合物所具有的介于固态晶体的三维有序和无规液态之间的一种中间相态,又称作介晶相,是一种取向有序流体,既具有液体的易流动性,又有晶体的双折射等各向异性的特征。1888年奥地利植物学家Reinitzer首次发现液晶,但直到1941年Kargin提出液晶态是聚合物体系的一种普遍存在状态,人们才开始了对高分子液晶的研究。近二十多年来液晶材料获得迅速的发展,这是因为液晶材料的光电效应被发现,因此被广泛地应用在需低电压和轻薄短小的显示组件上,因此它一跃成为一热门的科学研究及应用的主题,目前已被广泛使用于电子表、电子计算器和计算机显示屏幕上,液晶逐渐成为显示工业上不可或缺的重要材料,液晶高分子的大规模研究工作起步更晚,但目前已发展为液晶领域中举足轻重的部分。如果说小分子液晶是有机化学和电子学之间的边缘科学,那么液晶高分子则牵涉到高分子科学、材料科学、生物工程等多门科学,而且在高分子材料、生命科学等方面都得到了大量应用。1溶致型液晶有些材料在溶剂中,处于一定的浓度区间内会产生液晶,这类液晶我们叫它溶致液晶。如可以利用溶致型液晶聚合物的液晶相的高浓度低黏度特性进行液晶纺丝制备强度高模量的纤维。溶致型液晶材料广泛存在于自然界、生物体中,与生命息息相关,但在显示中尚无应用。2热致型液晶热致型液晶分子会随温度上升而伴随一连串相转移,即由固体变成液晶状态,最后变成等向性液体,在这些相变化的过程中液晶分子的物理性质都会随之变化,如折射率、介电异向性、弹性系数和粘度等。在热致型液晶中,又根据液晶分子排列结构分为三大类:近晶相、向列相和胆甾相。1近晶型液晶近晶相除有沿分子长轴的取向有序外,有一个沿某一方向的平移有序,近晶型液晶在所有液晶聚合态结构中最接近固体晶体,通常含有C=N或者N=N键及苯环结构,分子是厂棒状。目前各近晶相中的手性近晶C相,即铁电相引起人们广泛兴趣。铁电液晶具备向列相液晶所不具备的高速度(微秒级)和记忆性的优异特征,它们在最近几年得到大量研究。2向列型液晶向列相仅有沿分子长轴的取向有序,液晶分子呈棒状形刚性部分平行排列,该种液晶分子运动自由度大,是流动性最好的液晶,此类型液晶的粘度小,应答速度快,是最早被应用的液晶,普遍地使用于液晶电视、笔记本电脑以及各类型显示元件上。3胆甾型液晶这类液晶大都是胆甾醇的衍生物,胆甾醇本身无液晶性质,而它的衍生物均具有液晶特性,次类型液晶是由多层相列型液晶堆积所形成,为向列相液晶的一种,也可以称为旋光性的向列相液晶,因分子具有非对称碳中心,所以分子的排列呈螺旋平面状的排列,面和面之间为相互平行,而分子在各平面上为向列相。液晶的应用及发展状况1液晶材料在显示器的应用回顾液晶的发展史可以发现,尽管液晶早在19世纪60年代已经被发现,然而在相当长一段时间里,虽然液晶的许多有价值的现象早被揭露,但液晶始终只是实验室中的珍品而已。只有当液晶被用于显示器开始,它的研究才有了前所未有的动力。在这最近的几十年时间里液晶显示器有了长足的进步,目前液晶显示器已是整个领域中的佼佼者,只要稍加留意,不难发现市场上用液晶显示器的仪器仪表、计算器、计算机、彩色电视机等不仅品种越来越多,而且显示品质亦越来越高,价格越来越便宜。目前,各种形态的液晶材料基本上都用于开发液晶显示器,现在已开发出的各种向列相液晶、聚合物分散液晶、双(多)稳态液晶、铁电液晶和反铁电液晶显示器等。而在液晶显示中,开发最成功、市场占有量最大、发展最快的是向列相液晶显示器。按照液晶显示模式,常见向列相显示就有T N(扭曲向列相)模式,H T N(高扭曲向列相)模式、S T N(超扭曲向列相)模式、T F T(薄膜晶体管)模式等。其中TFT模式是近10年发展最快的显示模式。

大学物理简谐振动论文

336 评论(15)

subcellular

物体管道方向受力为f=FcosA=(GMm/r^2)x/rM/M0=r^3/R^3,f=(GM0m/R^3)xf+md^2x/dt^2=0,d^2x/dt^2+(GM0/R^3)x=0为简谐振动,即d^2x/dt^2+k^2x=0,k=(GM0/R^3)^(1/2)=((4/3)πρG)^(1/2)T=2π/k=(3π/ρG)^(1/2)
193 评论(11)

莫失莫忘_HT

浅谈建筑结构抗震设计概念(七)作者:王锁军北京蓝图工程设计有限公司下面这段话是一名网名叫朝阳的读者在读了浅谈(六)后的留言:“定性的理解两个质点的受迫振动的情况,当外荷载的频率和其中的一个振型的频率相等时,这个振型就会发生共振,其它振型的自振会很快消失,其振动就会以这种振型并以最大的振幅表现出来。但因为有阻尼的存在,最大振幅将维持在一个稳定的数值。”“钢尺有可能按这些图形的任何一种样子振动,就看振动台的频率了,频率越大,扭出来的麻花就越多,这就是振型,当然振动也可能是某些振型的组合。”“用绳子把两个质点拉开成第一振型的位移比例,突然断开,这就是第一振型的位移初始条件,就按第一振型振下去,没第二振型什么事儿。同样把两个质点拉开成第二振型的位移比例,断开后就是第二振型的振动。如果两个质点的初始位移比例和那个振型都不符,那就两个振型混合振起来,两个振型所贡献的位移比例要看初始位移和那个接近了。”这些话读起来很有意思,我们每个人的内心都可以看做是一个包含N个质点的多自由度体系,在社会大熔炉的影响下做着各种受迫振动,每个人因为资质、性格、所处环境的不同可能走出各种各样不同的人生,社会越动荡,每个人的人生道路就会越曲折、越复杂。家庭和生活环境就是我们人生的初始条件,一个好的人生导师(也可以是一种思想、一种信念)就像外荷载,或者说外在激励。当我们内心受到触动、思想受到感召,并不断得到强化时,就会和导师的思想发生共振,走上与其相同的人生道路,同时激发出自身的巨大能量。见贤思齐”是我们工作、生活取得进步的主要途径,关键是如何保证这个外在激励能一直保持下去,不要半途而废,这就不是一般人能做到的了。毕竟人生短暂,花花世界的诱惑就像阻尼一样无处不在我写“画图杂谈”和“浅谈抗震”每期都会不少读者留言,给我很大的鼓励和很好的建议,但这位读者的留言却让我非常的激动。他把我们的专业和人生联系了起来,又是如此的恰当,让人感慨,令人深思!本来想借题发挥一下,但觉得他已经说的太好了,再多言就是饶舌,故作罢!接上期,继续讨论振型分析。从两个质点的振型分析和不同振型的正交性,推广到多质点体系也是一样的。一:多质点体系自由振动看下多质点体系的自由振动方程:和两个质点体系的方程求解过程一样,通过假设质点的振动位移为简谐形式:写成矩阵并解矩阵方程的式子是这样的:展开这个行列式并解方程就可以得到以为未知数的N个代数方程(和质点数相同),解这个方程,从而有小到大得到N个,最小的叫基本振型(第一振型),就是在建筑结构简化的质量串都向一边倒的那个振型,基底剪力法也是用的这个振型进行的简化。求出n个后,代入上面的方程,就可以得到N个比例不会变化的振型位移:Y1 Y即N个振型。真正的振动是各质点的位移是以Y1 Y之间的而不变的比例关系来振动的,实际的位移是振型位移的倍数,可以表达为,这个CY1 CY值是一个任意常数(某一时刻为0),也就是说Y1 Y只是振型,即振动的形态,不是真实的振幅。反正Y1 Y代表的只是比例关系,为了简化,我们可以让Y1=1,得到的一组振型位移,叫标准化振型。上面所述和上期杂谈的两个质点的方法一样,只是扩展到多个质点罢了。大家看到了,两个质点的解方程都是如此的困难,如果多个呢?有人说,现在计算机技术了,解这个联立方程组瞬间的事,但我们学习不能什么东西直接利用机器智能,也应该走一遍前辈伟人走过的路,体会一下荆棘路上的波谲云诡和风光绮丽。二:振型正交性再用文字解释一下正交性一个振型下(比如i振型)的不同质点的一组惯性力这个是线性代数里面向量和矩阵的表达,很难用语言说清楚,既然是浅谈么就不较真了,按我的语言描述的思路往下进行就行了。正交性就是一个振型下的一组惯性力(对质量来说)或一组恢复力(对刚度来说)对另一个振型的位移做的功是虚功也就是0,那这个这个振型下的惯性力或恢复力对自己的振型的做的功那就是实功了,是多少呢?注意这个式子数学上不严谨,为了理解方便而已。学习物理学、力学时,我总是希望知道公式的物理意义,以便于理解,但这个广义质量和广义刚度的物理意义是什么?当年在清华读硕士时浮躁的结构动力学的学习就对这个广义质量和刚度的物理意义就感到困惑,周围的大神们似乎对这个问题也模棱两可,可能大家觉的这也算是个问题么?20多年忙碌的工作没时间似乎也没必要去思考这个无关紧要的问题,但现在写文章,又回到了当年的困惑。思考良久,下面的描述算是对这个概念的物理意义的解释吧,总比没有强。用下图表示上式振型力自作功是这样的:看了上图大家是不是又想起了伪加速度的概念,即恢复力等于伪加速度乘以质量,而伪加速度等于圆频率的平方乘以位移这是因为惯性力做功实际上是个过程,严格讲是力和位移从小到大积分出来的,不是最终的力和最终的位移代数相乘出来的。高中物理讲功是力乘以位移得出的。大学时我们知道,力和位移都是曲线变化的,这个功就不能用高中时的直接相乘得出了,而是需要数学积分了,数值上等于力-位移曲线包络的面积,这就是抗震能量原理的基本概念。所以这种惯性力直接乘位移的计算功(能量)的方法必然大的多(93)。其倍数一定是个确定的数,数学上可以求出来,应该就是93,我们不去管它,可以把这种算法算出来的能量叫广义动能(为了理解,作者个人定义)。质点的刚度乘以质点振型位移是恢复力,恢复力再乘以位移就是恢复力做的功,求和就可以理解成广义动能。我们可以把振型理解为质点的单位位移,刚度乘以单位位移数值上还是相等的,故广义动能可以理解为广义刚度。这个振型的自振频率:我们下文进行验证一下。三:多自由度体系的受迫振动的振型分解法(叠加法)(1):外荷载的下的受迫振动,我们还是先从最简单的简谐荷载开始分析。两个质点强迫振动的方程扩展为多质点体系的方程如下:也有不同地震激励下的振动的解法,比如港珠澳大桥几十公里长,两侧桥墩的地震波再用相同的地震波就不行了,这种需要进行不同地震激励下的结构振动的求解,我们的结构一般很少遇到,故不在文章浅谈之内,实话说也超出了我的能力。在平稳阶段,各质点将做简谐振动:上述的解法是是外力是简谐荷载下的解析解法,如何求解一般动荷载下的多质点体系的振动反应呢?显然用求解联立代数方程组的办法肯定是解决不了的,这就是解析法的局限。(2)形式上完全一样,但概念上是不一样的。振型贡献系数方程的各个参数的含义需要再描述一下,以加深理解。首先方程的未知数是振型(比如i振型)对质点的位移在时间t时刻的贡献的数值,是时间的函数。所有的振型就可以列出所有振型贡献系数向量。怎样理解这个广义外力呢?任何专业的动力学教材也没有文字去定义这个所谓的广义外力或广义刚度、广义质量什么。而文章既然是浅谈抗震概念,就试图用浅显的语言来解释这些概念的力学物理意义,不用很准确,有助于理解就好。广义外荷载就是作用于不同质点的外力幅值分别乘以该质点的某振型位移再求和, 外力乘以振型位移可以理解为该外力对该质点的贡献,相对位移的比例就是外力能够起作用的比例,所以可以理解外力在该振型的贡献系数。(3)上述的公式太抽象,我们做一个实际的例子来实际验算加强一下概念,一两层的建筑如下:先通过求解联立方程组,求出该两质点建筑的振型矩阵如下:两个振型:;用广义质量和广义刚度求频率:和联立方程组求解出来的第一振型的频率肯定是一样的。(4) 求关于外荷载:假设上述例题建筑的地面运动加速度为:四:线弹性动力时程分析法求解多质点结构振动反应对于一般外荷载的结构我们可以通过上述公式先求解个振型的叠加系数,在求和求出总振型位移。五:振型分解反应谱法和弹性动力时程分析上述的分析方法实际是直接时程分析法,因为用了累计叠加的杜哈梅积分,所以只能用于线弹性,也就是我们规范上所说的弹性动力时程分析。但振型分解反应谱法是规范的基本方法,而弹性动力时程分析是补充方法。前几期的浅谈,我们也是先用基本的结构动力学的杜哈梅积分求解单质点一般激励下(比如任意地震波)下的体系反应,但这种方法应用在直接工程中不不方便,计算量也太大,所以国际上通行的还是反应谱法,即用上述的直接法算足够多的且有代表性的地震波的反应并得出最大值绘出反应谱线来直接得出地震力。多质点同样道理,我们可以用单质点得出的反应谱(即体系周期与地震力的关系),求出不同振型(相应周期)的地震力,但多质点地震力是各振型的叠加,不是某一个振型说了算的,所以再用本文讲的振型叠加的原理进行总反应的振型组合,这就是规范振型分解(叠加)反应谱法的基本原理,详细的下次再谈吧。注:主要参考文献为1:《结构动力学理论及其在地震工程中的应用》Anil K Chopraz2:结构动力学:克拉夫3:结构力学(动力学专题):龙驭球、袁泗等4:抗震规范5:工程结构抗震设计:国家推荐高校教材、李爱群等2020年7月11日
93 评论(13)

相关问答