明宇的书
论文的题目有了、你的实验数据、曲线、反应式、实验结果一一列举说明(如果是政论文要把你的调查报告,政策实施的反馈意见等呈现在论文内)然后就是结尾总结了。总结其实就是依据事实、透过现象得出本质的东西即结论。具体润色就是你的语文水平问题了。 
事实上,所谓“大数据时代”的说法并不新鲜,早在2010年,“大数据”的概念就已由美国数据科学家维克托·迈尔·舍恩伯格系统地提出。他在 大数据时代一书中说,以前,一旦完成了收集数据的目的之后,数据就会被认为已经没有用处了。比如,在飞机降落之后,票价数据就没有用了;一个网络检索命令完成之后,这项指令也已进入过去时。但如今,数据已经成为一种商业资本,可以创造新的经济利益。 数据能够成为一种资本,与移动互联网有密切关系。随着智能手机、平板电脑等移动数码产品的“白菜化”,Wi-Fi信号覆盖的无孔不入,越来越多的人不再有“在线时间”和“不在线时间”之分,只要他们愿意,便可几乎24小时一刻不停地挂在线上;在线交易、在线支付、在线注册等网络服务的普及固然方便了用户,却也让人们更加依赖网络,依赖五花八门的网上平台。 而随着科技的进步,以往需要几盒软盘或一张光盘保存的信息,如今只需一片指甲盖大小的芯片,即可全部储存而且绰绰有余;以往需要电脑、显示器、读卡器等专门设备才能读取的数码信息载体,如今或许只需一部智能手机和一个免费下载的APP第三方应用程序,便可将数据一览无余。 大数据时代的科技进步,让人们身上更多看似平常的东西成为“移动数据库”,如带有存储芯片的第二代银行卡、信用卡,带有芯片读取功能的新型护照、驾驶证、社保卡、图书证,等等。在一些发达国家,官方为了信息录入方便,还不断将多种“移动数据库”的功能组合成一体。 数字化时代使得信息搜集、归纳和分析变得越来越方便,传统的随机抽样被“所有数据的汇拢”所取代,基于随机抽样而变得重要的一些属性,如抽样的精确性、逻辑思辨和推理判断能力,就变得不那么重要,尽可能汇集所有数据,并根据这些数据得出趋势和结论才至为关键。简单说,以往的思维决断模式是基于“为什么”,而在“大数据时代”,则已可直接根据“是什么”来下结论,由于这样的结论剔除了个人情绪、心理动机、抽样精确性等因素的干扰,因此,将更精确,更有预见性。 不过,一些学者指出,由于“大数据”理论过于依靠数据的汇集,那么一旦数据本身有问题,在“只问有什么,不问为什么”的模式下,就很可能出现“灾难性大数据”,即因为数据本身的问题,而做出错误的预测和决策。(如能帮到你,望您采纳!!谢谢!!)
"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 "大数据"首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。 从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢? 大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。 大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。 大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。 大数据分析广泛应用于网络数据挖掘,可从用户的搜索关键词、标签关键词、或其他输入语义,分析,判断用户需求,从而实现更好的用户体验和广告匹配。 大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。 大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。 当下我国大数据研发建设应在以下四个方面着力 一是建立一套运行机制。大数据建设是一项有序的、动态的、可持续发展的系统工程,必须建立良好的运行机制,以促进建设过程中各个环节的正规有序,实现统合,搞好顶层设计。 二是规范一套建设标准。没有标准就没有系统。应建立面向不同主题、覆盖各个领域、不断动态更新的大数据建设标准,为实现各级各类信息系统的网络互连、信息互通、资源共享奠定基础。 三是搭建一个共享平台。数据只有不断流动和充分共享,才有生命力。应在各专用数据库建设的基础上,通过数据集成,实现各级各类指挥信息系统的数据交换和数据共享。 四是培养一支专业队伍。大数据建设的每个环节都需要依靠专业人员完成,因此,必须培养和造就一支懂指挥、懂技术、懂管理的大数据建设专业队伍。
大数据时代一切信息都能知道,1什么是大数据及其历史2大数据带来的好处3大数据带来的坏处4总结不要太好写了吧,
2015年,大数据市场的发展迅猛,放眼国际,总体市场规模持续增加,随着人工智能、物联网的发展,几乎所有人将目光瞄准了“数据”产生的价值。行业厂商Cloudera、DataStax 以及 DataGravity 等大数据公司已经投入大量资金研发相关技术,Hadoop 供应商 Hortonworks与数据分析公司 New Relic 甚至已经上市。而国内,国家也将大数据纳入国策。 我们邀请数梦工场的专家妹子和你来聊聊 2015 年大数据行业九大关键词,管窥这一年行业内的发展。 战略:国家政策 今年中国政府对于大数据发展不断发文并推进,这标志着大数据已被国家政府纳入创新战略层面,成为国家战略计划的核心任务之一: 2015年9月,国务院发布《促进大数据发展行动纲要》,大力促进中国数据技术的发展,数据将被作为战略性资源加以重视; 2015年10月26日,在国家“十三五”规划中具体提到实施国家大数据战略。 挑战:BI(商业智能) 2015年对于商业智能(BI)分析市场来说,正由传统的商业智能分析快速进入到敏捷型商业智能时代。以 QlikView、Tableau和SpotView 为代表的敏捷商业智能产品正在挑战传统的 IBM Cognos、SAP Business Objects 等以 IT 为中心的 BI分析平台。敏捷商业智能产品也正在进一步细化功能以达到更敏捷、更方便、适用范围更广的目的。 崛起:深度学习/机器学习 人工智能如今已变得异常火热,作为机器学习中最接近AI(人工智能)的一个领域,深度学习在2015年不再高高在上,很多创新企业已经将其实用化:Facebook 开源深度学习工具“Torch”、PayPal使用深度学习监测并对抗诈骗、亚马逊启动机器学习平台、苹果收购机器学习公司 Perceptio……同时在国内,百度、阿里,科大讯飞也在迅速布局和发展深度学习领域的技术。 共存:Spark/Hadoop Spark 近几年来越来越受人关注,2015年6月15日,IBM 宣布投入超过3500名研究和开发人员在全球十余个实验室开展与 Spark相关的项目。 与 Hadoop 相比,Spark 具有速度方面的优势,但是它本身没有一个分布式存储系统,因此越来越多的企业选择 Hadoop 做大数据平台,而Spark 是运行于 Hadoop 顶层的内存处理方案。Hadoop 最大的用户(包括 eBay 和雅虎)都在 Hadoop 集群中运行着Spark。Cloudera 和 Hortonworks 将 Spark 列为他们 Hadoop 发行的一部分。Spark 对于 Hadoop来说不是挑战和取代相反,Hadoop 是 Spark 成长发展的基础。 火爆:DBaaS 随着 Oracle 12c R2 的推出,甲骨文以全新的多租户架构开启了 DBaaS(数据库即服务Database-as-a-Service)新时代,新的数据库让企业可以在单一实体机器中部署多个数据库。在2015年,除了趋势火爆,12c多租户也在运营商、电信等行业投入生产应用。 据分析机构 Gartner预测,2012年至2016年公有数据库云的年复合增长率将高达86%,而到2019年数据库云市场规模将达到140亿美元。与传统数据库相比,DBaaS能提供低成本、高敏捷性和高可扩展性等云计算特有的优点。 诱人:数据科学家 随着行业的发展,人才显得尤为重要,各公司都期待数据科学专业人才能够挖掘数据信息,来帮助公司开源节流。美国招聘网站 Glassdoor的报告称,数据科学家的平均年薪为118709美元(约合人民币737550元),而程序员的平均年薪为64537美元(约合人民币400974元)。 数据科学家能够通过统计变成涉及、开发和调用算法而支持业务决策;管理海量数据;可视化数据以辅助理解。其需要具备三项基本技能:数学/统计、计算机能力、在特定业务领域的知识,被《哈佛商业评论》评委二十一世纪最吸引人的职业。 最快:Sort benchmark/阿里云 阿里云在 SortBenchmark(全球科技公司“计算奥运会”之称)的2015年排序竞赛中用不到7分钟(377秒)就完成了100TB的数据排序,打破了 Apache Spark的纪录4分钟。 开源:Pivotal 2015年2月,由 EMC 和 VMWare 成立的 Pivotal 宣布其大数据套件的三个核心组件开源:基于内存的分布式 NoSQL数据库GemFire、基于 Hadoop 架构的大规模并行 SQL 分析处理引擎 HAWQ、大规模并行处理分析数据库 Greenplum。 Pivotal 开放其大数据套件核心组件的源代码,最主要原因是 Cloud Foundry 开源战略成功驱动,部署大数据战场。 多金:“数字锦衣卫” Palantir 2015年7月起 Palantir开始发起新一轮融资,达到8亿美元,截止目前已经共计融资2亿美元,公司估值200亿美元,排名世界第四,仅次于Uber。 Palantir是一家位于加州的大数据情报分析科技公司。该公司的技术是在海量信息之间建立联系、寻求有价值的线索,为情报机构提供结论:在摩根大通内部用于定位网络欺诈,在桥水联合基金,Palantir被用来管理 1570亿美元的投资基金。该公司曾经帮助美国政府追踪基地组织头目奥萨马·本·拉登。由于其主要客户是政府机构,外界对它的内部状况了解不多。
事实上,所谓“大数据时代”的说法并不新鲜,早在2010年,“大数据”的概念就已由美国数据科学家维克托·迈尔·舍恩伯格系统地提出。他在 大数据时代一书中说,以前,一旦完成了收集数据的目的之后,数据就会被认为已经没有用处了。比如,在飞机降落之后,票价数据就没有用了;一个网络检索命令完成之后,这项指令也已进入过去时。但如今,数据已经成为一种商业资本,可以创造新的经济利益。数据能够成为一种资本,与移动互联网有密切关系。随着智能手机、平板电脑等移动数码产品的“白菜化”,Wi-Fi信号覆盖的无孔不入,越来越多的人不再有“在线时间”和“不在线时间”之分,只要他们愿意,便可几乎24小时一刻不停地挂在线上;在线交易、在线支付、在线注册等网络服务的普及固然方便了用户,却也让人们更加依赖网络,依赖五花八门的网上平台。而随着科技的进步,以往需要几盒软盘或一张光盘保存的信息,如今只需一片指甲盖大小的芯片,即可全部储存而且绰绰有余;以往需要电脑、显示器、读卡器等专门设备才能读取的数码信息载体,如今或许只需一部智能手机和一个免费下载的APP第三方应用程序,便可将数据一览无余。大数据时代的科技进步,让人们身上更多看似平常的东西成为“移动数据库”,如带有存储芯片的第二代银行卡、信用卡,带有芯片读取功能的新型护照、驾驶证、社保卡、图书证,等等。在一些发达国家,官方为了信息录入方便,还不断将多种“移动数据库”的功能组合成一体。数字化时代使得信息搜集、归纳和分析变得越来越方便,传统的随机抽样被“所有数据的汇拢”所取代,基于随机抽样而变得重要的一些属性,如抽样的精确性、逻辑思辨和推理判断能力,就变得不那么重要,尽可能汇集所有数据,并根据这些数据得出趋势和结论才至为关键。简单说,以往的思维决断模式是基于“为什么”,而在“大数据时代”,则已可直接根据“是什么”来下结论,由于这样的结论剔除了个人情绪、心理动机、抽样精确性等因素的干扰,因此,将更精确,更有预见性。不过,一些学者指出,由于“大数据”理论过于依靠数据的汇集,那么一旦数据本身有问题,在“只问有什么,不问为什么”的模式下,就很可能出现“灾难性大数据”,即因为数据本身的问题,而做出错误的预测和决策。