亦恋桥
数学小论文的几种具体写法数学小论文通过学生对生活中数学问题的观察和发现,引起学生的好奇心和求知欲,使学生体会到数学贴近他们的生活,从而对数学产生亲切感,激发起他们学习数学的热情和兴趣;通过引导学生对课堂中学习的数学知识进行实践运用,让学生感受到数学的实用性,提高数学学习的实效;通过探究趣味题和智慧题,开拓学生的视野,培养学生思维的灵活性和深刻性。现谈谈数学小论文的几种具体写法 一道数学题的解答。主要是学生对某一道有挑战性的题目简便的或与众不同的解法(包括一题多解)。例如,书后的思考题,奥数题,教师或家长布置的智慧题,数学刊物上的挑战题,平时自己在做题时遇到的有一定难度的题目等。学生通过对这些问题的解决,不但发展了思维,而且体验到一种强烈的成就感,这对他以后数学的学习将是一个巨大的动力。 用数学的眼光去分析现实问题。主要指学生用数学的眼光去观察、计算、分析现实问题,获得一种理性的思考。比如,有学生写道:如果每人每天节约1克水,那全国13亿人口每天可以节约1 300吨水,发出了“人人节约一滴水,沙漠也能变绿洲”的感慨!还有学生写道:如果每个去银行储蓄的人每次都能为“希望工程”捐1角钱的话,全国那么多储蓄点捐到的钱可以资助多少贫困学生实现上学的梦想呀!学生能从这些角度通过数学的计算去思考社会意义,它的价值就能远远超过数学研究本身。 生活中的数学问题。主要用来记录学生在生活中遇到的感兴趣并有亲身体验的有关数学的情境记录。写这种数学小论文的题材特别多,比如,有学生写到了人民币为什么只有1元、2元、5元而没有3元、4元、6元、7元、8元、9元的;再如,有学生写到了他家住的楼房每层有24级楼梯,那么他从1楼到5楼要爬多少级楼梯。这些都是生活中每天要经历的很平常的事,但学生一旦用数学的眼光来观察和思考这些看似平常的生活问题,就在数学和生活之间架起了一座桥梁,能够感受到生活中处处有数学。 课堂上的数学问题。主要指学生在课堂数学学习过程中自己的一些思考和发现。这对学生数学学习非常有帮助,比如,有个学生在学习画三角形的高时,发现书上介绍了锐角三角形和直角三角形的三条高,而钝角三角形只介绍了一条高。她在课后通过自己的思考和尝试,画出了钝角三角形的另外两条高,在得到老师的肯定后,欣喜万分,连忙写下了《我发现了钝角三角形的另外两条高》这篇数学小论文。 数学实践活动中遇到的问题。主要指学生通过自己亲自动手实践,在实践活动的过程中产生的疑惑、获得的启示和得到的结论等。比如,有个学生在教师还没有上实践活动课“可能性”之前,自己看书并根据书上的内容用红、蓝铅笔去摸,自己动手去探索并验证规律,事后写了一篇心得体会,写出了她在动手实践过程中的想法和体会,让她觉得其乐无穷。 数学童话。主要指学生发挥丰富的想象力,用童话的形式(其中包含着数学论述)来记录看到的数学世界。这是语文学科和数学学科一种很好的整合,那种独特的视角,生动的语言描述,让教师耳目一新。 
每个学写数学小论文的同学都会遇到这样的几个问题:1,数学是什么2,生活中的数学3,提出论点4,进行论证5,点明中心一篇优秀的数学小论文的诞生,对于它的创作者来说都是一次创造性的劳动,其创作的素材、水平,乃至创作的灵感……绝不是轻易可以得到的,它们需要作者在自己的学习与生活实践中,去进行长期的积累与思考。创造性的劳动对创作者的要求很高。有的是在平时十分注意对课本知识进行归纳整理、拓展延伸,学习中有许多意想不到的收获;有的是从课外阅读中得到收获与启发后,获得灵感、得以选题;……更有甚者是,有的作者在生活中发现问题注意观察、探究,并与自己的数学学习相联系,对观察、探究的结果进行思考、归纳、总结,升华为理论,写出了令人叫绝的好论文。综观获奖论文的小作者们,他们大多是数学学习的有心人。好论文的作者不仅要有较好的数学感悟,还要有良好的文学修养、综合素养。
很简单啊,先开头接着过程最后结尾o(∩_∩)开个玩笑。 首先题目要吸引人,很简单的,只要你智商有20以上就写得出来 o(∩_∩)接着一个很简单的引入,中间加入一些有规律的式子或定义,或者发现,然后写出自己的见解。如果是有规律的式子那么可以总结出公式(用n代替);如果是定义,那就举例说明一下定义;如果是自己的发现,那就写出发现的内容和它与数学的关系。结尾也可以很简单,可以总结,可以感叹。以下是我自己写的一篇论文可以参考参考哦 平方的奥妙 最近我发现,平方有很多的奥妙,在求这个数的平方时,我发现:一、1 =0 +(0+1)=12 =1 +(1+2)=4 3 =2 +(2+3)=9 …… 10 =9 +(9+10)=100 11 =10 +(10+11)=121 12 =11 +(11+12)=144 …… 20 =19 +(19+20)400 21 =20 +(20+21)=441 22 =21 +(21+22)=484 …… 总而言之,一个正整数的平方等于比它小1的数的平方加上这两个数的和的结果:n =(n-1) +(n-1+n) 利用这条公式,我又进行推算,如果n=0和负整数,是否合适这条公式:0 =(-1) +((-1)+0)=0(-1) =(-2) +((-2)+(-1))=1(-2) =(-3) +((-3)+(-2))=4(-3) =(-4) +((-4)+(-3))=9(-4) =(-5) +((-5)+(-4))=16从这几个算式看出,0和负整数也符合这条公式。通过这些说明n =(n-1) +(n-1+n)适合所有的整数。二、一个算式:(3+4) =?这道题看似很简单,但是如果换成是字母,如:(A+B) =?那你还会做吗?(A+B) =(A+B)×(A+B)把后面的(A+B)看成一个整体,利用乘法分配律,得=A×(A+B)+ B×(A+B) 再利用乘法分配律,得A +AB+BA+B 合并同类项,得A +2AB +B 所以(A+B) = A +2AB +B 最后验算一次。那如果算式是(A-B) =?是否也能用刚才的方法算出来呢?(A-B) =(A-B) ×(A-B) = A×(A-B) -B×(A-B) =A -AB-BA+B = A -2AB+B 最后验算一次。看来平方里也有这么多得奥秘,值得我们细细观察!