pip0003
毕业论文中写“国内外研究现状”:首先要把收集和阅读过的与所写毕业论文选题有关的专著和论文中的主要观点归类整理,并从中选择最具有代表性的作者。在写毕业论文时,对这些主要观点进行概要阐述,并指明具有代表性的作者和其发表观点的年份。还要分别国内外研究现状评述研究的不足之处,即还有哪方面没有涉及,是否有研究空白,或者研究不深入,还有哪些理论问题没有解决,或者在研究方法上还有什么缺陷,需要进一步研究。 三、写国内外研究现状应注意的问题 二是要反映最新研究成果。 三是不要写得太少。如果只写一小段,那就说明你没有看多少材料。 四是如果没有与毕业论文选题直接相关的文献,就选择一些与毕业论文选题比较靠近的内容来写。扩展资料:通过写国内外研究现状,可以考察学生是不是阅读了大量的相关文献。 在写之前,同学们要先把收集和阅读过的与所写毕业论文选题有关的专著和论文中的主要观点归类整理,并从中选择最具有代表性的作者。在写毕业论文时,对这些主要观点进行概要阐述,并指明具有代表性的作者和其发表观点的年份。还要分别国内外研究现状评述研究的不足之处,即还有哪方面没有涉及,是否有研究空白,或者研究不深入,还有哪些理论问题没有解决,或者在研究方法上还有什么缺陷,需要进一步研究。 三、写国内外研究现状应注意的问题 二是要反映最新研究成果。 三是不要写得太少。如果只写一小段,那就说明你没有看多少材料。 四是如果没有与毕业论文选题直接相关的文献,就选择一些与毕业论文选题比较靠近的内容来写。 
国内主要研究矩阵秩的变换和分解。矩阵秩的求法很多,一般归结起来有以下几种:1)通过对矩阵做初等变换(包括行变换以及列变换)化简为梯形矩阵求秩。此类求解一般适用于矩阵阶数不是很大的情况,可以精确确定矩阵的秩,而且求解快速比较容易掌握。2)通过矩阵的行列式,由于行列式的概念仅仅适用于方阵的概念。通过行列式是否为0则可以大致判断出矩阵是否是满秩。3)对矩阵做分块处理,如果矩阵阶数较大时将矩阵分块通过分块矩阵的性质来研究原矩阵的秩也是重要的研究方法。此类情况一般也是可以确定原矩阵秩的。4)对矩阵分解,此处区别与上面对矩阵分块。例如n阶方阵A,R分解(Q为正交阵,R为上三角阵)以及Jordan分解等。通过对矩阵分解,将矩阵化繁为简来求矩阵的秩也会有应用。5)对矩阵整体做初等变换(行变换为左乘初等矩阵,列变换为右乘初等矩阵)。此类情况多在证明秩的不等式过程有应用,技巧很高与前面提到的分块矩阵联系密切。
这种老掉牙的课题写了干什么?前人已经研究的透彻不能再透彻了。既然写文章,搞研究就要真的做了点实质性的东西出来,否则只是浪费时间。