jiayuemei
数学小论文 数学是一门神奇的学科,它不仅教会我们简单的加减乘除,更是一种对思维的锻炼,分析能力的提升。做数学题的方法首先是读懂题,其次仔细分析题目所给的条件,最后选择合适的方法解决问题。生活中我们也常常遇到难题,遇事不慌,冷静分析这就是数学带给我们的启示。 记得四年级,有一次,我和一个朋友出去玩,朋友的妈妈给我们俩出了一道题:1~100报数,每人可以报1个数,2个数,3个数,谁先报到100,谁就获胜。话音刚落,我便思考怎样才能获胜,我想:这肯定是一道数学策略问题,不能盲目地去报,里面肯定有数学问题,用1+3=4,100/4=25,我不能当第一个报的,只能当最后一个报的,她报X个数,我就报(4-X)个数,就可以获胜,我抱着疑惑的心理去和她报数,显然,她没有思考获胜的策略,我用我的方法去和她报数,到了最后,我果然报到了100,我获胜了。原来这道数学问题是一道典型的对策问题,需要思考,才能获胜。通过这次游玩,我喜欢上了对策问题,也更加爱思考,寻找数学中的奥秘。 真是生活处处皆学问啊,难怪说:数学来源于生活,也服务于生活。这个问题使我认识到在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,从而犯以偏概全的错误。 
数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。 记住,站在峰脚的人是望不到峰顶的。
六年级小学生数学教学要做到“五个注视”新课标指出:“学生是数学学习的主人”,“学生是数学课堂的主体”“学生的数学学习活动应当是一个生动、活泼、主动和富有个性的过程。”� 课改倡导的“自主式”教学是以学生为学习活动的主体的教学方式,它是“学生是数学学习的主人”新理念的完美体现。它充分尊重每一个学生的个性差异和学习风格,教师充分发挥教师的组织者、引导者与合作者的作用。在学生需要的时候提供适当帮助,学生由此而获得知识技能,发展能力与人格。如何落实新的教学课改精神,才能真正确立“学生是学习主人”的地位?本文就围绕“五个注视”谈谈自己的粗浅体会,以供同行参考。� 一、注视激发“小主人”自主学习的心态� 孔子说:“知之者不如好知者,好知者不如乐知者。”兴趣是人对事物的一种向往或积极探索追求的心理倾向,它是学生自主学习的内在动力。为此,做到“两个善于”:其一,善于创设情境,激活学生学习的心态。激发学生自主获取学习信息的强烈欲望,引导学生自主求知探究。其二,善于设计数学问题,激发学生自主的思维方式。现实的、有意义的、富有挑战性的问题是数学思维的魅力所在,在自主探索中,学生才能自始自终保持当学习的主人的心态。如,教学“小数的性质”时,教师创设了这样的一个情境,板书:5、50、500。问:“谁能联系这三个数提出一个数学问题?”一位学生提出:“能在这3个数的后面加上适当的单位名称
[专题介绍]生活中我会经常遇到与余数有关的问题,比如:某年级有将近400名学生。有一次演出节目排队时出现:如果每8人站成一列则多余1人;如果改为每9人站成一列则仍多余1人;结果发现现成每10人结成一列,结果还是多余1人;聪名的你知道该年级共有学生多少名吗?假设有一名学生不参加演出,则结果一定是不管每列站8人或9人或10人都将刚好站齐。因此此时学生人数应是8、9、10公倍数,而8、9、10的最小公倍数是360,因此可知该年级共有361人。研究与余数有关的问题,能帮助我们解决很多较为复杂的问题。[分析] 1、两个整数a和b,除以一个大于1的自然数m所得余数相同,就称a和b对于模m同余或称a和b在模m下同余,即 a≡b(modm)2、同余的重要性质及举例。〈1〉a≡a(modm)(a为任意自然)〈2〉若a≡b(modm),则b≡a(modm)〈3〉若a≡b(modm),b≡c(modm)则a≡c(modm)〈4〉若a≡b(modm),则ac≡bc(modm)〈5〉若a≡b(modm),c≡d(modm),则ac=bd(modm)〈6〉若a≡b(modm)则an≡bm(modm)其中性质〈3〉常被称为"同余的可传递性",性质〈4〉、〈5〉常被称为"同余的可乘性,"性质〈6〉常被称为"同余的可开方性"注意:一般地同余没有"可除性",但是:如果:ac=bc(modm)且(c,m)=1则a≡b(modm)3、整数分类:〈1〉用2来将整数分类,分为两类:1,3,5,7,9,……(奇数)0,2,4,6,8,……(偶数)〈2〉用3来将整数分类,分为三类:0,3,6,9,12,……(被3除余数是0)1,4,7,10,13,……(被3除余数是1)2,5,8,11,14,……(被3除余数是2)〈3〉在模6的情况下,可将整数分成六类,分别是:0(mod6):0,6,12,18,24,……1(mod6):1,7,13,19,25,……2(mod6):2,8,14,20,26,……3(mod6):3,9,15,21,27,……4(mod6):4,10,16,22,29,……5(mod6):5,11,17,23,29,……[经典例题] 例1:求437×309×1993被7除的余数。思路分析:如果将437×309×1993算出以后,再除以7,从而引得到,即437×309×1993=269120769,此数被7除的余数为1。但是能否寻找更为简变的办法呢?473≡3(mod7)309≡1(mod7)由"同余的可乘性"知:437×309≡3×1(mod7)≡3(mod7)又因为1993≡5(mod7)所以:437×309×1993≡3×5(mod7)≡15(mod7)≡1(mod7)即:437×309×1993被7除余1。例2:70个数排成一行,除了两头的两个数以外,每个数的三倍恰好等于它两边两个数的和,这一行最左边的几个数是这样的:0,1,3,8,21,……,问这一行数最右边的一个数被6除的余数是几?思路分析:如果将这70个数一一列出,得到第70个数后,再用它去除以6得余数,总是可以的,但计算量太大。即然这70个数中:中间的一个数的3倍是它两边的数的和,那么它们被6除以后的余数是否有类似的规律呢?0,1,3,8,21,55,144,……被6除的余数依次是0,1,3,2,3,1,0,……结果余数有类似的规律,继续观察,可以得到:0,1,3,2,3,1,0,5,3,4,3,5,0,1,3,2,3,……可以看出余数前12个数一段,将重复出现。70÷2=5……10,第六段的第十个数为4,这便是原来数中第70个数被6除的余数。思路分析:我们被直接用除法算式,结果如何。例4、分别求满足下列条件的最小自然数:(1)用3除余1,用5除余1,用7除余1。(2)用3除余2,用5除余1,用7除余1。(3)用3除余1,用5除余2,用7除余2。(4)用3除余2,用7除余4,用11除余1。思路分析:(1)该数减去1以后,是3,5和7的最小公倍数105,所以该数的是105+1=106(2)该数减去1以后是5和7的公倍数。因此我们可以以5和7的公倍数中去寻找答案。下面列举一些同时被5除余1,被7除余1的数,即1,36,71,106,141,176,211,246,……从以上数中寻找最小的被3除余2的数。36≡0(mod3),71≡2(mod3),符合条件的最小的数是71。(3)我们首先列举出被5除余2,被7除余2的数,2,37,72,107,142,177,212,247,……从以上数中寻找最小的被3除余1的数。2(mod3),37≡(mod3)、因此符合条件的最小的数是37。(4)我们从被11除余1的数中寻找答案。1,12,23,34,45,56,67,78,89,100,133,144,155,166,177,188,199,210,232,243,……1(mod3); 1(mod7), 不符合12≡0(mod3), 12≡5(mod7) 不符合23≡2(mod3), 23≡2(mod7) 不符合34≡1(mod3), 34≡6(mod7) 不符合45≡0(mod3), 45≡3(mod7) 不符合56≡2(mod3), 56≡0(mod7) 不符合67≡1(mod3), 67≡4(mod7) 不符合78≡0(mod3), 78≡1(mod7) 不符合 89≡2(mod3), 89≡5(mod7) 不符合100≡1(mod3), 100≡2(mod7) 不符合122≡2(mod3), 122≡3(mod7) 不符合133≡1(mod3), 133≡0(mod7) 不符合 144≡1(mod3), 144≡4(mod7) 不符合155≡2(mod3),155≡1(mod7) 不符合166≡1(mod3),166≡5(mod7) 不符合177≡0(mod3),177≡2(mod7) 不符合188≡2(mod3),188≡6(mod7) 不符合199≡1(mod3),199≡3(mod7) 不符合210≡0(mod3),210≡0(mod7) 不符合221≡2(mod3),221≡4(mod7) 符合因此符合条件的数是221。例5 判断以下计算是否正确(1) 42784×3968267=1697598942346(2) 42784×3968267=1697598981248思路分析:若直接将右边算出,就可判断41784×3968267=169778335328,可知以上两结果均是错的;但是计算量太大。如果右式和左式相等,则它们除以某一个数余数一定相同。因为求一个数除以9的余数只需要先求这个数数字之和除以9的余数,便是原数除以9的余数。我考虑上式除以9的余数,如果余数不相同,则上式一定不成立。(1)从个位数字可知,右式的个位数字只能是8,而右式个位为6,因此上式不成立。(2)右式和左式的个位数字相同,因而无法断定上式是否成立,但是 4+2+7+8+4=25, 25≡7(mod9)3+9+6+8+2+6+7=41,41≡5(mod9)42784≡7(mod9);3968267≡5(mod9)42784×3968267≡35(mod9)≡8(mod9)(1+6+9+7+5+9+8+9+4+2+3+4+8)≡3(mod9)因此(2)式不成立以上是用"除9取余数"来验证结果是否正确,常被称为"弃九法"。不过应该注意,用弃九法可发现错误,但用弃九法没找出错误却不能保证原题一定正确。习题1、 求16×941×1611被7除的余数。3、 判断结果是否正确:(1)5483×9117=49888511(2)1226452÷2683=3344、 乘法算式3145×92653=2910 93995的横线处漏写了一个数字,你能以最快的办法补出吗?5、 13511,13903,14589被自然数m除所得余数相同,问m最大值是多少?