十里店桃花岛
探索生命的奥秘 研究细胞及生命的起源,也许是最令人神往的科学探索之一。然而,甚至不久以前人们还认为,进行这项研究的各门科学已经濒临山穷水尽之地,医学、生物化学、生物学等原地踏步,难以进展。为了推动这项重要研究取得进展,各学科的研究人员必须通力合作。柏林自由大学的埃德曼教授发起并领导了这项多学科合作的研究项目。 在埃德曼教授的示意图表中,有一个组合名字频频出现,这就是核糖分子式5SrRNA。这个分子式的图解,样子好象一只正在滴水的水龙头。这就是忧核、优裂殖菌和原生菌核糖5SrRNA的二次结构模型。而埃德曼教授的科研小组主要课题正是5SrRNA,它究竟是怎么-回事? 生物细胞的结构与功能。 在人体血液循环过程中,细胞获得某种物质,而核糖则从这些物质中制造出身体所需的蛋白质。细胞的构成与实施功能主要靠蛋白质,而蛋白质分子的构造形态则是储存在细胞中的脱氧核糖枝酸里的。这一基因信息首先被看成信使核糖核酸,然后又游移向核糖,它们先向蛋白质工厂提供细胞。蛋白质细胞的基本结构是氨基酸,其中有20多种不同的氨基酸结构已为人们所知。与此相反,脱氧核糖核酸的分子和信使核糖核酸的分子却仅有4种不同的基本结构。这些基本的结构作为典型的三位组合(密码子),含有某些氨基酸的密码,即有-种密码代表一种氨基酸的密码信息。核糖的任务就是首先将这些基本结构用化学方法联结起来,而组成蛋白质分子。在所有生物的细胞中,这些反应步骤都会多少出现,只是方式有所不同而已。 由于上述蛋白质的组合要求以极高的准确程度进行,因此,核糖的结构上也是极为复杂的。即使是简单的菌类,其核糖也由大约55个不同的蛋白质分子和3种不同的核糖核酸组成。所有生物的核糖中,普遍存在有一种核糖酸,即核糖5Sr一RNA,它“仅仅”含有120个基本结构。每个基本结构的排列顺序中的微小差异都表明每4个基本结构的排列顺序中的微小差异,也表明每个细胞处于何种发展阶段,并说明它与其它生物的某一个细胞有着血缘关系。 细胞本身是如何形成的 埃德曼教授和他的助手们运用先进的计算机系统来分析核糖核酸基本结构的排列顺序,并且将储存在脱氧核糖核酸中的部分人工合成在一起。专家甚至与欧洲其它国家和美国的大型计算机联网,以便取得更加精确的数据。关键问题在于,如果说一切生物最终是由细胞组成的,细胞是生命的基础,那么,细胞本身又是如何形成的呢?关于这个问题,科学家们持有两种截然不同的理论,其一便是细胞形成假说。直到几年前,这种理论仍被认为是基本正确的。这种理论认为,在长达数亿年的时间里,比较高级的细胞正是从细菌细胞演变而来,由于细胞内部的区别而变得日益复杂起来。 第二种观点被多数专家否认,而坚持孩理论的人近百年来甚至被讥讽为幻想家。这种观点认为,在生物进化过程中,若干个细胞组合为比较高级的细胞,即形成所谓细胞内部的生命规律。比较高级的细胞乃是互相依存的生命群体。 科学家们通过研究,戏剧性地澄清了这一难题。起初,人们还对细胞内部生命规律学的细胞假说提出过许多反面论证,当时以为细胞的这种形成假说似乎是不可能的。然而,后来却发生了一次具有重要意义的试验性突破,即人们可以对氨基酸的排列顺序进行分析。在试验过程中,首先确定了细胞的原始结构,即4个可能的基本结构(核昔酸)的组合。科学家们发现,是否符合这种基本结构排列顺序,可以作为衡量有机物质之间是否存在血缘关系的标准。此外,人们还发现,优核细胞中所出现的细胞器(线粒体和叶绿体)竟然与某些菌类有着血缘关系,即它们皆起源于菌类。因此可以说,核糖核酸的排列顺序的分析,显然对举世公认的细胞内部生命规律学关于细胞的假说作出了贡献。 按照这一理论,一个较高级的细胞至少由2个或者4个裂殖菌所组成。也就是说,-个可以发酵的寄主细菌能够吸收将运动机制带入细胞的鞭毛裂殖菌。然后,再增加具有呼吸功能的裂殖菌,由此便产生了今天细胞中的线粒体。植物细胞则还要吸收具有光合作用的裂殖菌,从而形成细胞中的叶绿体。 一细胞内部生物学”的建立与发展在数百万年的进化过程中,细胞里以前独立的裂殖菌转变为小器官,这些小器官又将其大部分遗传特性转移给细胞核,进而使细胞核成为细胞中重要的协调者,即比较高级的细胞并不是作为整体而形成的新的统一体。这一认识的重大意义在于,它证实了所有生物,最终是由裂殖菌及其前身组合形成的。这种组合显然是在地球上还未存在多细胞生物时发生的。 与菌类细胞相比,这种新的统一体具有决定性的优点,即一个细胞内部的各种新陈代谢形式由细胞膜相互隔离,因此发酵、呼吸、光合作用等过程可以同时进行。而在普通茵类中,某个时间往往能进行一种新陈代谢过程。 生物学家施维姆勒教授为”细胞内部生物学”的建立和发展奠定了基础,并且为“细胞内部生命规律学”的细胞理论的突破性进展作出了重大贡献。施维姆勒教授指出:“这样 生物学可以解释其最小的结构成分了。我们试图在此基础上建立其一个至今未有的生物序列体系。人们可以在核糖核酸与脱核糖核酸基本结构排列顺序的基础上,将各种各样的细胞类型排列成一个合理的体系。每个被吸收入细胞的裂殖菌都带有其自身的蛋白质组合机制。我们认为,这一共生过程仍在继续,今天的细胞还在吸收着裂殖菌,并组成着小器官。 科学家们关注着细胞学研究的进展,而施维姆勒教授正在从完全不同的角度进行着研究。他发现过一种昆虫---小禅,它由一个寄主细胞组成,而它所吸收的裂殖菌则作为共生生物。在长期发展过程中,两个单一细胞的物质竟然如此相互适应,以至到了一个个体在失去另一个个体的情况下无法存活的程度。 施维姆勒教授指出,“以小蝉为例,我们可以从活生生的物体上观察到这种共生现象是如何进行的。生活在小蝉系统的裂殖菌估计已有2亿多年了,它逐渐失去了脱氧核糖核酸。目前我们尚不清楚裂殖菌的脱氧核糖核酸是简单丧失了呢,还是已经进入了小禅的细胞核中去了。在没有共生现象的蛋卵中,只能形成头—脑胚胎,但却缺少尾部。这表明,寄主细胞如果与裂殖菌的遗传信息共生的话,它就可变成一个小器官。”在谈到每个研究领域的相互渗透时,埃德曼教授说:我们希望建立一种模型体系,从而在分析核酸德基础上,对细胞内部生命规律德基础上,对细胞内部生命规律德起源加以排列划分利用这个可能性,能够将整个世界划分为3个“王国”:其一为细胞核体系,其二为不包括细胞核德其他体系。然而,通过对核酸德进一步研究,我们发现对不包括细胞核德其他体系,还可划分成原本裂殖菌和优裂殖菌,后者则是正常的。目前尚存的裂殖菌、原本裂殖菌往往生存在极端条件之下,例如PH值很高或很低的情况下,含盐浓度或者含酸浓度很高的状况下。也许人们以为,科学家的认识固然十分有趣,可它对人类又有什么实际意义呢?然而,正如施维姆勒教授的试验所证实的那样,表面现象往往是极不可靠的。他说:“这一基础研究将对应用科学产生非同寻常的影响。甚至可以用来对付恶魔般的癌症。因为我们认为只有对细胞中的分子过程进行全面研究,才能理解癌症的形成机理。而首要的问题是应该弄清基本的过程与联系。” 
这里是阅读地球奥秘的窗口 博物馆主要展出矿物、岩石、古生物化石等地质标本,其藏品乃是几代地质学者、本校师生自上个世纪以来在各种艰苦的野外环境中采集、积累起来的,也包括了校友及国际友人等馈赠的标本、以及部分购置的标本。现馆藏标本总量60000余件,其中公开展出4500余件。藏品除了采自国内各地之外,还有来自世界40多个国家和地区的标本。 博物馆展厅面积约为2400平方米,分为地球科学厅、恐龙厅、地球与生命演化历史厅和地球物质厅四个展厅。在地球与生命演化历史展厅有个有趣的比喻:如果把地球形成的46亿年历史压缩成一天24小时的话,那么,最早生命出现在凌晨4时,中午时出现了真核细胞,18时有了两性繁殖。大约在20:52时发生第一次大冰期——雪球事件。21时雪球事件消失,动物黎明出现曙光,只过了十分钟时间,动物便开始了爆发式的演化——“寒武纪大爆发”。22时50分,恐龙家族问世;50分钟后,恐龙覆灭。在零点来临前不到1分钟左右,出现了人类。中华民族上下五千年的悠久历史,也仅仅相当于09秒。尽管人类只发展了“最后一分钟”,却成为地球生物进化史奇迹——第一智慧生命。“我们总说地球变迁历史,依据呢?凭什么说三亿年前这里是陆地,五亿年前这里是海洋?我们做地质研究,就是要搜集各种见证地球历史变迁的标本和地质记录。” 博物馆馆长、北京高校博物馆联盟秘书长周洪瑞教授说。在博物馆里珍藏了一些见证了地球和生命演化历史的珍贵标本。例如,天外来客——Fe-Ni陨石、世界屋脊顶的奥陶纪灰岩、太平洋底的钴锰结核、南极大陆的地质标本等。 来自南极的标本 在地球科学展厅的一座展柜里,陈列着12件采自南极洲的标本,包括1件地表苔藓和11件岩石。 据周教授介绍,这一组标本是由地大校友、第一位登上南极大陆的女地质学家金庆民捐赠给博物馆的。1986年10月,金庆民随南极考察队赴南极考察。历时199天,环球航行37000公里,途径太平洋、印度洋、大西洋,完成了海洋物理、海洋生物、海洋化学,海洋地球物理学和在南极大陆的考察任务。1988年11月,金庆民作为世界唯一女性参加了中美双方联合举办的攀登南极最高峰——文森峰的科学考察,历经艰险,征服了号称为“死亡地带”的一切险恶,首次在南极文森峰发现较大规模的铁岩系及很有开发前景的铁矿,填补了文森峰山区地质学研究的空白,成为世界上第一位进入南极腹地的女地质学家。在1986年至1990年间,金庆民曾三次深入南极进行科学考察,获得多项科研成果,填补了我国和南极地区几项地质科研的空白,为我国地质事业和提高我国对南极研究的国际地位作出了重要贡献。金庆民从南极回国后,精心挑选了12件从南极带回的标本捐赠给了母校。当时博物馆还在一栋教学楼里,这12件标本就放在展厅的一个柜子里,还有金庆民本人写的标签,记录了每件标本的详细信息。 这些地质标本对了解南极大陆的地质地貌有着极其重要的意义。尽管南极是冰雪的世界,冰盖面积3300平方公里,平均厚度2000米,那里的自然环境极其严酷,被称为世界寒极、风极和旱极。然而南极的资源丰富,包含最大的铁矿、煤田以及淡水资源等。“在两亿年之前,南极、印度、澳大利亚、南非和南美是一块大陆,而如今,若想了解清楚南极大陆的历史和别的大陆的历史的区别和联系,只有做了地质分析才可以了解。每一次派往南极的科考队,除了气候学家、海洋学家等之外,还有地质学家,地质学家随科考队去南极主要做地质分析,以掌握南极的地质地貌。”周教授说。 “世界屋脊”的珍贵纪念 “与采自南极的标本难得一见的,是一块采自世界屋脊的奥陶纪灰岩,这是由中国登山协会的贡嘎巴桑于1975年5月27日采自珠峰顶。是由地大校友王富洲在担任中国登山协会的主席时代表登山协会捐赠给地大的,王富洲也是从北坡登上珠峰顶的第一批人之一。”就是这么一块十分不起眼、放在路上根本没人捡的小石头,因来自珠峰顶这一特殊的产地和地理位置,却有着重要的科学意义。 奥陶纪是古生代的第二个纪,开始于距今约5亿年,延续了4500万年。奥陶纪是地球历史上大陆地区遭受广泛海侵的时代,是火山活动和地壳运动比较剧烈的时代,也是气候分异、冰川发育的时代。从奥陶纪起,海生无脊椎动物真正达到繁盛的时期,也是这些生物发生明显的生态分异的时期。在奥陶纪后期,各大陆上不少地区发生重要的构造变动、岩浆活动和热变质作用,使得这些活动区的部分地区褶皱成为山系,从而在一定程度上改变了地壳构造和古地理轮廓。“珠峰顶在五亿年前是温暖的浅海环境,奥陶纪灰岩就是很好的证据,因为灰岩形成于温暖的浅海环境中。根据将今论古的原则,在五亿年之前,珠峰顶以及青藏高原周围的很多地区都在海平面以下。” 神秘的海底世界 馆藏的采自太平洋海底约6000米深处的海底多金属结核,是1997年10月16日由海洋四号考察船利用抓网从太平洋底采集的,由广州海洋地质调查局捐赠给博物馆。“这些来自太平洋海底的标本是我国最早在太平洋洋底勘探的时候采集到的,那时候还没有“蛟龙号”,主要是进行海洋的先导性研究。”周教授说。 21世纪将是人类挑战海洋的新世纪。2001年,联合国正式文件中首次提出了“21世纪是海洋世纪”。人类社会也正在以全新的姿态向海洋进军,国际海洋竞争日趋激烈,主要表现在以下方面:发现、开发利用海洋新能源;勘探开发新的海洋矿产资源;获取更多、更广的海洋食品;加速海洋新药物资源的开发利用;实现更安全、更便捷的海上航线与运输方式。 在海底,不仅发生着浊流和深海粘土、碳酸盐岩以及海底的沉积作用,而且形成了金属结核、结壳和石油、天然气水合物等重要的矿产资源。馆藏的多金属结核就是海底沉积形成的矿物集结。这些多金属结核以大小不一的结构呈现在太平洋海底,小的只有鸽子蛋般大小。 “海洋勘探强国从海底采集到这些结核之后,或进行科学研究、成分研究,或进行了工业冶炼的实验室研究。从九十年代开始,我国也开始采集了这些标本,进行了相关的研究。将来有一天, 我们的开采成本下降以后,我们就要向海底要资源了。”周老师笑着说。 天外来客 陨石是地球之外未燃尽的宇宙流星脱落原来运行轨道成碎块散落到地球或其他行星表面的石质的、铁质的或是石铁混合物质,也称“陨星”。馆藏的“天外来客”是一块大约100公斤的Fe-Ni铁陨石,是1956年9月,地大当时的在校学生在广西田林县实习时发现的。“这件陨石展品,以前的标签信息,仅仅写着产地,其余的信息一概没有。去年年底,57届校友聚会,其中一位年近80岁的老校友找到我,说这块陨石是他与另外三位同学于1956年9月在广西实习时发现的,并将发现者的名字留给了我。” 采访的最后,周教授向本刊记者介绍了把这块铁陨石定为本馆的镇馆之宝的理由。首先,体积如此之大的铁陨石在国内是很罕见的,比这大的有,但是相对来说还是比较少的。在国内任何一间博物馆中,都很难见到这么大块头的铁陨石。其次,这是由地大的学生在野外实习发现的,不是从市场上购买的。最后,这块铁陨石是来自地球之外的客人,对了解天体的成分是有一定意义的。
近年来,各国科学家竞相进行太空探索。但一个不可否认的事实是,人类在热衷研究其他星球的同时,对地球本身仍缺乏足够的认识。比如,对我们所居住的地球上的海洋来说,正如一位美国海洋生物学家所说,“我们关于海底的知识还不如对火星的多”。星际探索短期内可能不会给人类带来实质性的好处,而深海中蕴藏的丰富资源却有望在不久的将来为人类造福。日本在海洋探索方面走在了各国的前列。比如“海沟”号无人驾驶深海探测器,曾在1995年潜入世界最深的马里亚纳海沟,潜深达到10911米。但不幸的是,“海沟”号最终却在日本沿海失踪了。“海沟”号的生命历程1986年,日本海洋科技中心开始研制“海沟”号无人驾驶潜艇,于1990年完成设计并开始制造。“海沟”号长3米,重6吨,耗资1500万美元。它是缆控式水下机器人,上面装备有复杂的摄像机、声呐和一对采集海底样品的机械手,是世界上惟一下潜深度达到7000米的探测器。2003年5月29日,日本科学家利用“海沟”号在日本高知县东南大约130公里左右的海域进行海底调查作业,当时“海沟”号的下潜深度为4673米。由于当年的4号台风已经开始接近这一海域,操作人员当天下午1时29分提前结束调查作业。但是在回收“海沟”号时,工作人员发现不知何原因“海沟”号已无法回到母船的发射架中。1分钟后,海面控制船与“海沟”号的光缆通信和高达3000伏的电力供应突然中断,控制船不得不采取紧急措施。当天下午4时17分,控制船的卷扬机只回收到了“海沟”号的母船发射架,“海沟”号则因电缆断裂而不知去向。操作人员大吃一惊,连续用方位测定器向“海沟”号发射了3次信号,但控制船没有接收到“海沟”号的任何信号。“海沟”号上搭载的电波发射器可以连续工作240小时,而电波发射器的发射范围仅在4公里左右。当时由于台风已经接近该海域,控制船上的操作人员推测认为,“海沟”号没有反应,可能是它受海浪冲击与控制船距离已经超过了4公里的范围。此后,日本海洋科学技术中心决心找回“海沟”号,并进行了一个月的搜索,但一无所获。直至当年6月30日,日本方面才向外界公布了“海沟”号失踪的消息。日本海洋科学技术中心于当年7月4日开会研究后认为,在大片海域中即使动用声呐仪也不可能找到久已失去联系的“海沟”号,于是宣告搜索结束。“海沟”号失踪使不少科学家痛心不已。对日本的深海科研来说,这次的损失无法估量。一些科学家甚至将“海沟”号比作航天界的“哥伦比亚”号。他们认为,这个价值5000万美元的探测器是独一无二的,它的失踪对科学研究是一个重大损失。到深海去看看大海正以自己特有的魅力召唤着人类。“海沟”号的失踪并不能阻止人类进行深海探测,正像“哥伦比亚”号失事不能阻止人类的航天事业一样。今天的人类正面临着人口、资源和环境三大难题。随着各国经济的飞速发展和世界人口的不断增加,人类消耗的自然资源越来越多,陆地上的资源正日益减少。为了生存和发展,人们必须寻找新的物质来源,海洋应当是首选。因此一些科学家认为,深海给人类带来的利益要比那些耗资庞大的太空计划实惠得多。此外,深海生物新物种的发现,在探索生命起源方面具有重大意义。深海探测中的技术问题在短期内,人类乘坐潜水器潜入深海还不太现实。因为在海洋中,每下潜100米就增加10个大气压,几毫米厚的钢板在1万米洋底就像大气中的鸡蛋壳一样易碎。为了克服这些障碍,从事深海探测的大部分科学家都已从有人驾驶潜水器转向机器人潜水器的研究。现在,称为“遥控潜水器”(ROV)的有绳潜水探测器和小型的计算机控制蓄电池驱动潜水器(AUV)可以由任何合适的船只操纵。此外,它们的造价也比较便宜,而且不会给操纵它的人带来任何危险。另一种可能解决的方案是开发出能取代适于海洋最深处压力的船壳。美国海军已成功试验过利用新型的陶瓷材料制成有浮力的深潜船壳,这类船壳具有人乘坐时所需的安全可靠性。目前这种陶瓷材料的数据资料已经解密,此举必然会促进其商用开发。而对于潜水器的浮力材料,不仅要求它能承受住巨大的压力,而且要求它的渗水率极低,以保证其密度不变,否则机器人就会沉入海底。在高压环境下,耐高水压的动态密封结构和技术也是水下机器人的一项关键技术。机器人上任何一个密封的电气设备、连接缆线和插件都不能有丝毫渗漏,否则会导致整个部件甚至整个电控系统的毁灭。由于无线电波在水中的衰减太快,所以在水中不能使用无线电通信、无线电导航及无线电定位系统。“海沟”号与控制船之间就是利用光缆进行通信的。由控制船发出的信号以及由“海沟”摄像机拍摄到的实时图像信号均可通过光缆传输,操作人员可观察监视器上的图像,在控制船上对“海沟”号进行操作。这些技术问题如能得到彻底的解决,海底这块最后未开发的“处女地”必将得到很好的开发和利用。届时,人类面临的一些社会问题也可有望迎刃而解。我们企盼着这一天的到来。(曲笑)大洋探秘从海洋中探索生命的奥秘记日本海洋科学技术中心 曲国斌海洋被称为地球上最后一个未开拓的疆域,她不仅可以为人类提供“取之不尽、用之不竭”的能源,而且还是人类探索生命奥秘的绝好窗口。位于日本横须贺市海滨的日本海洋科学技术中心就是一所专门从事这一科研活动的规模最大的机构。从开发资源到进一步了解地球日本海洋科学技术中心成立于1971年,30年来它走过了3个发展阶段。日本在20世纪70年代初设立这所科研机构的目的在于开发海洋大陆架资源。它通过实施“海洋计划”开发出了可在300米的深海的高水压、黑暗和低温等严峻条件下进行作业的技术以及潜水技术和潜水系统等。80年代,为展开对深海及海洋微生物的研究,它研制了有人潜水考察船“深海2000”号、海中作业实验船“海洋”号、3000米级无人潜水器“海豚3K”号等。到90年代,它开始在世界范围内展开对海洋的全面考察和研究,为此建造了6500米级潜水考察船“深海6500”号、深海考察船“海岭”号、万米级无人潜水器“海沟”号、海洋地球考察船“未来”号、深海巡航探测器“浦岛”号,最新研制的工具是远程航行型自律无人潜水器“AUV”等。1998年,日本海洋科学技术中心制定了新的“海洋开发长期计划”,提出“进一步了解地球”的目标,并设定了五大研究领域:揭示海洋和气候的变化机制、调查海洋海底的动态、探索海洋生态系、解析地球系统及研究新的海洋开发技术等。其中提出,21世纪的重要研究目标之一就是“探索地球生命的起源”。为此,海洋科学技术中心还启动了“深海生态环境”和“深海地球钻探计划”两个研究项目。发现地下生物圈1977年,美国的“阿尔宾”号潜水考察船最早在太平洋上的加拉帕戈斯岛附近2500米深的海底发现了热水(温度高达90℃)喷出孔周围存在着“热水喷出孔生物群落”。以此为契机,1984年,日本海洋科学技术中心使用“深海2000”号在距东京不远的相模滩1200米海底深处也发现了热水喷出孔生物群落,其中有在壳质形成的栖管内生活的虫类以及蜗牛、贝纲、甲壳纲、多毛纲、海葵目等的多种生物。据研究,这些动物不依赖光合作用,而把从地球内部喷出的硫化氢和甲烷等还原性低分子化合物作为初级能源,依靠由以硫酸化细菌、甲烷化细菌等为主的化学合成细菌构成的食物网供应能源。不仅如此,在相模滩及日本列岛附近的日本海沟及南海海沟等处,还发现了“冷水涌出带生物群落”。它们同样是通过化学合成而诞生的生物群落。到目前为止,在日本列岛周围海底,已经发现了18处冷水涌出带生物群落和13处热水喷出孔生物群落。自从发现了存在于海底的热水喷出孔生物群落之后,各国科学家竞相在太平洋、印度洋和大西洋等海域寻找深海生物。结果发现,这种热水喷出孔生物大多生存在地质构造上是活动着的海岭的两侧。而且,它们之间还有某种共同之处。在考虑到海底扩大的不连贯性和海底扩大的历史过程等因素的基础上,科学家对热水喷出孔生物群落的生物地理学特征进行了比较,结果提出如下假说:“生活在大西洋的热水喷出孔生物群落里的生物是从东太平洋派生出来的,而最有可能的传播路线可能就是东南印度洋海岭和西南印度洋海岭。”1996年,日本海洋科学技术中心使用无人探测器“海沟”号又在世界最深的海域———马里亚纳海沟查林杰海渊深度约1万米处采到了海底泥沙的标本,从中分离出来大约3000株微生物,并发现了新的微生物种类,如在1000个大气压下能够生存的超喜压性细菌、超好热性细菌、可制造有用酶的蛋白质分解酶及新的糖质分解酶的微生物等。2000年8月,日本海洋科学技术中心使用深海考察船“海岭”号又在印度洋的中央海岭、东南海岭和西南海岭的交接处(南纬25°19′10〃、东经70°2′24〃,水深2420米)发现了热水喷出孔生物群落,共有20多种生物,其中许多都是第一次发现。这表明,即使在深海海底那样的极限环境里,也存在着多样性的生物世界。科学家们设想:地球诞生初期的微生物有可能不受外界干扰而照原样生存下来;既然海底地壳下这样严酷的环境中还有生物生存,那么,在火星等星球上也会有生命存在;如果热水喷出孔生物是适应地球诞生初期高温环境的生物的话,那么,这就有可能使我们解开地球生命起源的奥秘。进一步探索地球生命的起源海底堆积着各种各样的物质层,保存着有关地球的各种历史资料,由此也可以了解地球气候的变化过程。根据迄今为止的研究,80万年来,地球上曾经有过多次超过现在的高温(40℃)和寒冷(-40℃)的时代。而从1万年前开始到现在,地球在气温上处于“异常的稳定期”。更有意义的是,上述谈到的“地下生物圈”,正是探索生命起源的绝好场所。把它与地球外行星上的生命现象进行比较,将加深人类对生命、对自身的了解。日本海洋科学技术中心为此进行超临界水中的氨基酸聚合观察实验、微生物在超临界水中的溶解实验、压力生理学实验等。科学家们发现,色氨酸能够使酵母菌在高压环境(250个大气压~300个大气压)下安然无恙地生存、发育,高等生物细胞(HeLa细胞)在400个大气压下会大大改变其骨骼形态等。为了进一步探索地球生命的起源,日本将从2003年起,与美国联合实施“统一国际深海地球勘探计划(IODP)”。为此,日本建造了“地球”号地球深部勘探船,并于今年1月在三井造船公司冈山公司厂举行了“进水式”。这条船长210米,宽38米,高116米,深2米,吃水6米,排水量约6万吨,船员150名,能够从海底向下钻探达到5公里~7公里(这是地壳到地幔的最短距离)处的地幔。为了实施这一国际性研究活动,日本海洋科学技术中心设立了“深海生物风险中心”,开发了“深海微生物实验系统”,其中包括地壳岩芯标本的防止微生物污染技术、地壳岩芯及岩石标本的微生物解析法、微生物分离法和培养法等技术。人们对这个计划寄予了极大期望,期待着能够在揭开生命起源之谜等方面获得进展。