期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    3

  • 浏览数

    158

fkshine
首页 > 期刊问答网 > 期刊问答 > 电子信息工程方面的论文英语翻译

3个回答 默认排序1
  • 默认排序
  • 按时间排序

sustcmedical

已采纳
我自己翻译的,你参考着看哈~~/========================================================/也就是说,每个采样点携带的信息很大程度上与相邻采样点是重复的。人们已经开发出了数十种DSP算法,能够将数字化的语音信号转化成需要较低比特率的数据流。这些被称为数据压缩算法。匹配解压缩算法被用来将信号还原为其原始形式。这些算法在压缩程度和由此产生的声音质量上各不相同。通常,将数据率从64kb/s降低为32kb/s,声音质量几乎没有损失。当数据率压缩到8kb/s时,声音很明显受到影响,但仍旧适用于长途电话网络。最高可以实现将数据率压缩到2kb/s,这会导致声音高度扭曲,但在某些应用如军事通信上仍旧适用。回声控制回声在远距离电话通信中是一个很严重的问题。当你在电话的一端讲话时,一个代表你声音的电信号传递到相连的接收器,同时这个信号的一部分返回,成为了回音。如果连接是在几百英里以内,收到回声所用的时间只有几个毫秒。人耳已经习惯了听到这些有着很短延迟时间的回声,这样听到的声音是正常的。随着距离的增加,回声的影响变得更加引人注意和不可忽视。在洲际通信中,延迟可能会有几百个毫秒,那会特别令人反感。数字信号处理中,通过测量返回的信号并产生一个适当的反信号来解决这样的问题。这种技术也可以让使用扬声器的人一边听一边讲话,而不用受声音反馈(啸叫)的干扰。它也可以被用来减少环境噪音,通过产生一个反信号来削弱噪声。音频处理人类的两个主要感官是视觉和听觉。相应的,大多数的DSP与图像和音频处理相关。人们既听音乐又听演讲。DSP在这两方面都产生了革命性的影响。音乐从音乐家的麦克风到高保真音响,走过了不同寻常的道路。数据数字化很重要,它防止了与模拟存储相伴的退化等问题的出现。对于这一点,曾经比较过录音带和光盘的音乐质量的人很清楚。

电子信息工程方面的论文英语翻译

213 评论(11)

yanyrliu

At present, about the definition of neural network are not unified, according to the neural network at Hecht, Nielsen's point of view, the neural network is defined as: "the neural network is made up of a number of very simple processing units to each other in some way connected to form a computer system, the system depends on its status, the dynamic response of the external input information to process " The sources and characteristics of integrated neural network and a variety of interpretation, it can be expressed as: simple neural network is a designed to mimic the human brain structure and function of information processing From the perspective of the theory model of neural network, it can be divided into two main categories; Namely layered feedforward neural network, neural network and Internet feedback for layered feedforward neural network, its characteristic is through appropriate BP algorithm for sample training and learning of the neural network input and output can approximate arbitrary input and output the corresponding nonlinear mapping, that after learning to implementing a map is a kind of adaptive control Due to the layered feedforward neural network has "self learning" and "training" function, and can imitate the intelligence of the human brain, thus has strong classification and Therefore, layered feedforward neural network is widely used in network communication channel equalization, the global network management, information flow prediction as well as other adaptive control, And the characteristics of the feedback neural network is through design to study the associative memory content or optimization answer set to minimum point of the system energy function, the dynamic equilibrium process of neural network can realize the automatic rapid processing optimization problems, so it can be widely used for the field of network communication, including the selection of packet scheduling and optimal routing, exchange of information and High speed Internet, nonlinear neural network also has the chaotic behavior, it is a very complex NP problem, can produce unpredictable sequence trajectory, fast password algorithm can be designed to be safe and It is because of the neural network learning mapping, lenovo optimization function and the characteristics of chaotic behavior can in theory to resolve the broadband network communication technology is facing some problems, which has been widely used in network 3 neural network application in network communicationThe following according to the "self learning" function of neural network, lenovo optimization function and chaotic behavior of the three functional features from three aspects: introduces the application of neural network in network communication instance求采纳
286 评论(13)

利见大人

你的文章看不清。 我是学电子信息工程的
270 评论(8)

相关问答