鲁山
【导读】本文是一篇侧重于专业化的文章,对于一些从事钢筋混凝土专业的朋友有一定的指导意义。还有就是对于一些学习类似专业的朋友,也有一定的帮助。随着现代科学技术的进步,一些专业从事相应专业的工作者对于这类钢筋混凝土的研究已经到达了一个新的位置。之所以这样的去研究它,从某种意义上对于建筑物的安全是有一定的支持的。现在我们这篇文章主要把钢筋混凝土这一块知识拿出来,以供大家来探讨分析,从而能够让我们深入的了解框架柱轴压比限值的一些疑问。在最大的程度上让我们的朋友能够更好的去完成工作,并在工作中不断的改善不良的一些做法。提到钢筋混凝土的框架柱轴压比限值,我们还是有一些不能理解。因为对于轴压比这个概念我们还是不明白。现在我就来具体的介绍一下。所谓的轴压比就是柱子受轴力的设计值跟一些混凝土相关部分的一种抗压能力的比值。用公式来看就是N/fcbh。框架柱针对于实验研究跟工程震害的实践,我们可以看清楚的就是这种轴压比在钢筋混凝土框架柱的抗震性能上具有很大的影响。轴压比还有配箍以及剪跨比相关的指标,要比其它的指标更能够影响在钢筋硅框架柱延性。因此在现在所执行的建筑设计规范,或者是混凝土结构设计相关的规范当中,由于钢筋混凝土框架柱出现以受拉钢筋的屈服为先导的大偏心受到压力破坏的一系列理论,从而得出相应的实验结果。框架柱我们通过限制轴压比的做法能够很好的保障柱有足够的变形能力。这样一来,钢筋混凝土框架柱就会在地震的作用当中产生大变形的时候,针对于相应静力试验中反复荷载的相关作用下,能够剪力位移滞回曲线就是不发散的。这样就可以足够的保证其相应的框架柱坏而不倒。框架柱随着目前的市场科技的变化和发展,以及相关施工技术的提升加剧,一些超高层的建筑物已经如同雨后春笋般涌现。由于这些高层的层数不断增加,因此让柱子的轴向力不断加大。在设计相关钢筋混凝土结构当中我们更会严格的考虑到框架柱轴压比限值的问题。这一点是我们必须要仔细关注的。框架柱指标上面根据专家的一些描述,我们就可以看到这个指标的重要性。再有,一些朋友在进入施工的时候,也应该重点注意这些。因为它是安全的保障。 
1、工程概况 在该工程的设计过程中,针对该工程平面凹口较深,平面较为狭长及高宽比较大等结构特点,在结构布置、分析计算和构造措施等方面做了一些有效的处理,使整体设计满足规范要求,且经济实用。以下谈谈本人在设计中的一点体会。 该工程地下一层、地上二十八层,总建筑面积:69m2 ,其中地上建筑面积:88m2,建筑物室外地坪至主体结构檐口的高度为:4m。地下室建筑面积:81m2,地下室层高50m:裙房三层。一层层高4m:二、三层层高为5m。主楼四至二十八层,每层层高0m。该楼层四层以上平面南侧凹口深6m,占凹口方向楼板长900m的2%,另还有两处凹口分别占凹口方向楼板长的8%和9%,高宽比为6。 2、地基及基础 1 地基土层结构及特征 据本次勘探揭露,拟建场勘察深度内岩土体可分为l0层:①层冲填土、②层耕填土、③层细砂、④层中砂、⑤层粗砂、⑥层砾砂、⑦层强风化泥质粉砂岩、⑧层中风化泥质粉砂岩。 2 地下水埋藏条件及砼腐蚀性评价 勘察场区内赋存有上层滞水和潜水。 据场地水质分析报告结果:拟建场地下潜水对混凝土结构、钢筋混凝土结构中钢筋无腐蚀性,对钢结构具弱腐蚀性。 3 地基方案与基础选型分析评价 根据以上场地地基岩土层条件和拟建建筑物点,经过充分的技术经济分析比较,决定采用直径分别为Ф800、Ф1000、Ф1200的钢筋混凝土钻孔灌注桩,混凝土强度等级为C30,以⑧层中风化泥质粉砂岩做桩端持力层。桩长为22~29m左右,Ф800的单桩承载力设计值为4200KN;Ф1000的单桩承载力设计值为6000KN;Ф1200的单桩承载力设计值为7900KN。因南昌地区中风化泥质粉砂岩中均有多层且无规律的软弱夹层,桩端进持力层取5d。根据最后静荷载试验结果来看,Ф1000的单桩竖向抗压极限承载力为13500KN,极限状态下桩顶累计沉降量为9mm,质量和经济效果均较好。本工程主楼带地下室、地下室层高5m,底板掺混凝土膨胀剂,桩基承台为梁式承台,因为上部结构为剪力墙,荷载分布较为均匀,因而梁板截面高度不需过大,承台梁高lO00mm,地下室底板除核心筒部分(1500mm)外,其余均为350mm,砼标号为C30;为抵抗混凝土收缩、徐变及加强基础的整体性,地下室底板采用双层双向满布配筋Ф14@120。地下室外围墙厚300mm,内部剪力墙厚250mm,地下室顶板作为上部结构的嵌固部位,板厚为200mm,并采用双层双向Ф 12@150满布配筋。 3、上部结构设计与计算 根据《建筑抗震设防类标准》(GB50223—2008)本工程为丙类建筑,结构的地震作用按设防烈度6度计算,采用全现浇钢筋混凝土剪力墙结构体系,剪力墙抗震等级为三级,框架抗震等级为三级。结构的阻尼比为05,水平地震影响系数最大值为04,基本风压为55KN/m2,地面粗糙度为B类,结构体型为4。地震力按X、Y两个方向计算,同时考虑扭转耦联,竖向力按模拟施工加荷方式1计算,风荷载按X、Y两个方向计算,恒、活荷载分开计算,周期折减系数为9,计算取21个振型。连梁刚度的折减系数为7,考虑抹灰粉刷层重量后,混凝土的重度为27KN/m2,地震力的分项系数为3,风荷载分项系数为4,恒荷载分项系数为2,活荷载分项系数为4。墙元细分中,壳元最大控制边长为0m。 该建筑平面有多处凹口,平面较为狭长,再加上楼梯问和电梯间开洞,采用SATWE进行分析。计算结构显示,结构在地震和风荷载作用下位移均在规范要求的范围内,但以扭转振动为主的第三振型周期T3 与侧向振动为主的第一振型周期T1之比为756;以扭转振动为主的第三振型周期T3和以侧向振动为主的第二振型周期T2 之比为865,并且第一振型和第二振型的扭转振动成分偏大,这表明结构扭转效应显著,对建筑结构不利。同时计算结果还表明,凹口周围、楼房东西两端及平面宽度变化处梁、墙等构件内力值较大。在设计时,考虑应将楼、电梯间处核心筒及5-12、5-14轴上剪力墙加强且连成整体,形成受力的主要部位,承担大部分的剪力和弯矩,实际电算时加强或削弱此部分刚度(主要为增加或减短墙长)对位移影响较大,较增加墙厚等方法有效的多。实际电算和分析相同,但由于建筑功能限制,5-G轴上,5-9轴和5-1l轴间;5-15轴和5-17轴间、还有5-l2轴和5-14轴间无法布置剪力墙,只有设置宽扁梁,加强刚度,实际效果较好,剪力墙成筒布置,在筒与筒之间将板厚加厚为120mm,实际电算时所有凹口处按未设连梁电算,在位移等满足要求规范要求,施工图则按所有凹口处增设250×400连梁处理,更加安全。在平面宽度变化处,剪力墙本工程剪力墙布置既满足了规范要求,经济效益又较好。为消除混凝土收缩、温差可能引起的裂缝,将屋面板配置了双层双向钢筋。 除平面不规则以外,该房屋的平均高宽比为6也较大,因而验算结构底部外围构件在侧向力最不利组合情况下的轴压比,并控制轴压比在6内;验算桩基在侧向力最不利组合下的抗压能力以及桩身是否会出现拉力,并通过调整桩的布置,使其符合要求。 在抗震构造措施方面,建筑物底部四层为剪力墙底部加强区;对墙体布置有变化处增设暗柱,加强其配筋。采取增大两端剪力墙的长度、调整其它部位剪力墙长度等措施,使用SATWE软件分析计算可知,凹口处及其周围剪力墙和连梁,以及建筑物两端转角、山墙处剪力墙和连梁基本上没有出现超筋现象,构件的截面和配筋设计符合规范要求。周期T1~T3 及其比值、结构位移值、基底剪重比、地震力倾覆弯矩等均在规范要求范围内,具体结果如下: 上述计算分析结果表明,T3 /T1远小于9,结构平面布置扭转影响较小;楼层最大层间位移角满足规范要求,且由Y向风荷载控制;底层剪重比接近于8%,结构刚度适合,受力体系经济合理,抗震性能良好。 4、结语 本工程在省抗震设计施工图检查中,经过省抗震专家评审,得到了专家的认可。专家肯定了我们对于本工程结构体系的选择、抗震设计参数的取值及对于平面不规则采取的构造加强措施。