期刊问答网 论文发表 期刊发表 期刊问答

竞争论文题目大全初一数学

  • 回答数

    7

  • 浏览数

    150

meng4895
首页 > 期刊问答网 > 期刊问答 > 竞争论文题目大全初一数学

7个回答 默认排序1
  • 默认排序
  • 按时间排序

MM_小咪呀

已采纳
论刘徽割圆术与现代极限思想的异同

竞争论文题目大全初一数学

340 评论(11)

lwcnews535

有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。 1、三角形很稳定,许多支架都是三角形的许多支架用三个脚支撑用了一个数学公理三点确定一个平面 2、一些人在木门上钉斜条,是为了克服四边形的不稳定性。卷闸门也是一样的道理。 3、河南登封观星台、南京中山陵都是中心对称图形 4、蚊帐的孔是六边形的~ 5、筷子是圆锥型的。光碟是圆形的。 6、电线是线段冰箱是长方体门是长方形轮胎是圆形地球是圆形 数学是一门很有用的学科。自从人类出现在地球上那天起,人们便在认识世界、改造世界的同时对数学有了逐渐深刻的了解。早在远古时代,就有原始人“涉猎计数”与“结绳记事”等种种传说。可见,“在早期一些古代文明社会中已产生了数学的开端和萌芽”(
225 评论(13)

我是冯阳

建议你用“论数学对称之美”为题目写一篇论文,举例可以用数字的对称性,图形的对称性等来写,完了再谈谈自己的感受就可以了。
312 评论(8)

麦尔宾宾

我的发现 同学们,在你们的数学学习中是否和我一样,有一些不经意的发现?现在我就来介绍我的几个发现。 如果要你算一个多位数乘5,你是不是准备列竖式?我却可以口算,因为我发现一个小诀窍。想知道吗?让我来告诉你:算48532×5的积,先找到这个数485320,再把它除以2,你会口算吗?242660这就是48532×5的积了。知道为什么吗?我把原来的数先扩大10倍,再缩小2倍,是不是相当于扩大5倍呀?你掌握这个小窍门了吗? 同样的发现我还有:一个数乘5只要用它本身加上它的一半就可以了。(想想为什么?)一个数乘15呢?用刚才的方法再加一步——你已经想到了吧,再扩大10倍就好了! 我还发现一个多位数,末两位符合这个要求:十位上十奇数,个位上是5,用它乘5,积的末两位肯定是75。我想这是为什么呢?因为多位数的个位与5相乘得25,积的个位是5,向十位进2,而十位的奇数与5相乘的到的是几十五,这个5应该和个位进上来的5相加写在十位上,所以这个积的十位上肯定是7,个位上肯定是5。同样的道理,你不难推出,一个多位数十位上是偶数,个位上是5,它与5相乘,积的末两位肯定是25。 这个发现能用我前面所说的一个数乘5的巧妙算法来解释吗?想想看,它们是一致的,因为这个数扩大10倍后,末两位是50,再除以2,可能百位上有余数1,与50合起来150÷2=75是末两位上的数字,也可能百位上没有余1,那么50÷2的商就是末两位上的数字。 同学们,我的这个小发现是不是很微不足道?但我很自豪,这是我自己动脑筋观察和思考的结果。伟大的发现不是由这点点滴滴组成的吗?同学们,让我们一起做一个勤于思考、善于发现的人吧!
280 评论(9)

yc137151

利用“想一想”,开发学生的思维、培养学生的学习兴趣。 新教材编排上版式活泼、图文并茂,内容上顺理成章、深入浅出,将枯燥的数学知识演变得生动、有趣,有较强的可接受性、直观性和启发性,教材安排的“想一想”对开发思维、培养兴趣有极大的帮助。如,在七年级数学第一章节中加入了"丰富的图形世界",从学生能看得见摸得着的实际物体出发,“想一想”引导学生动脑、并使学生进入了初中数学的一片新天地。在教学过程中,作为课程的执行者,我们应该对此加以强化。要善于运用幽默的语言、生动的比喻、有趣的例子、别开生面的课堂情境,激发学生的想的欲望。在教七年级数学“几何体”部分时,鼓励学生深入到生活中去寻找或制作教材中的几何体并拿到课堂上来。在寻找的过程中多想一想,学生就开始对几何图像有了感性的认识。当学生寻找、制作的东西成为课堂上的教具时,学生兴趣高涨,教学效果远比教师拿来现成的教具要好得多。又如七年级的“正方体的表面展开”这一问题,答案有多种可能性,此时,我们应给学生提供一个展示和发挥的空间,让学生自己制作一个正方体纸盒,再用剪刀沿棱剪开,展成平面,并用“冠名权”的方式激励学生去探索更多的可能性。在操作过程中,要求学生多想一想,不要习习惯性地只求一个答案。这样,不仅能开发学生的思维,调动了学生的积极性,而且也增强了学生的自信心,课堂上学生积极主动、兴趣盎然,无形中营造了一个活泼热烈、充满生命活力的教学氛围中学数学教学从“知识传授”的传统模式转变到“以学生为主体”的实践模式,着眼于数学思想方法的渗透和良好的思维品质的养成,注重学生创新精神和实践能力的培养,这既是实施素质教育的要求,也是新教材的精髓所在。 利用“试一试”,培养学生探究知识的能力,从而进一步提高学生的创新能力。 在新教材的试用过程中,我们可能会遇到一些暂时难以理解的问题,对新教材的编排会产生一些困惑。按照新课程标准,每学年的教学难度不是很明确,教师只能以教材中的例题和课后习题的程度,来指导自己的教学。这本也无可厚非,问题是新教材的习题配备,并没有注意按难易程度排列,有些练习、习题中的问题,比章节复习题中的问题还难。对此,我们不能轻易地进行否定,而应该多试一试,应该从创新教育的角度出发,创造性地去理解和使用新教材。如,七年级数学"绝对值"这一节的习题中提到“|a|”的问题,因为在此之前并未学习字母能表示数,所以学生难以理解。对于这个问题的处理有两种方法,一是可以把这部分题目挪到下一章去做;二是引导学生对a选取不同的值试一试,从这些不同的结果中去想、去探索、去归纳;三是从绝对值的概念出发,利用数轴求有多少个点到原点的距离等于|a|第一种方法采取了回避困难的态度,这样做不利于学生良好的意志品质的养成,有悖于新教材的宗旨。我们应当选择第二或第三种方法,在尝试过程中激发学生的探索兴趣,培养学生独立解决问题的能力。又如七年级的“队列操练中的数学趣题”可以让学生自已动手编成小品,记下每一次的结果,通过试一试学会用数据说话,并能在乐趣中进一步认识到数学是有用的,可以用数学来解决一些实际问题,让学生更愿意去想、去试、去探索。 总之,在课堂教学中,我们应积极主动地对课程进行适当的修正和调适,灵活使用新教材,设计出新颖的教学过程,把枯燥的数学知识转化为激发学生求知欲望的刺激物,引发他们的进取心。利用新教材中安排“读一读”“想一想”、“做一做”、“试一试”等内容,我们可以用这种富有弹性的课程设置,结合学生智力发展水平和发展要求的个体差异,有针对性地实施因材施教;利用新教材相对较为宽松的课时安排,选择更为合适的时机和内容,开展更多的社会实践活动,让学生将所学知识应用于生活,从“读”、“想”、“试”、“做”中体会数学的快乐;还可以通过多种方式将科学技术发展的新成果、新动向和新趋势,及时地应用在教学活动中,进一步体现数学的实用性等等。 在人才竞争日趋激烈的21世纪,在创新教育蓬勃开展的今天,社会对新教材充满了期望,学生对教师充满了期待。相信,在广大园丁的努力配合下,充分利用读、想、试、做等栏目,新教材必将如新世纪第一缕和熙的阳光,照耀着我国教育较为欠缺的创造性快快成长,让那些充满灵性的心智焕发出无限的创造力。
299 评论(10)

呦呦喂喂

目前解题技巧类的不新颖了,关于教改和养成理念方面的较好。初一的论文重点放在学生习惯的培养上,虽然是老问题,但是写的前卫点,还是很吸引人的。我给你建议一个标题,你自己准备素材和内容吧。《如何在数学课堂教学中培养学生的主体意识》
314 评论(8)

ankeyli

数学的三大特点严谨性、抽象性、广泛的应用性所谓数学的严谨性,指数学具有很强的逻辑性和较高的精通性,一般以公理化体系来体现。 什么是公理化体系呢?指得是选用少数几个不加定义的概念和不加逻辑证明的命题为基础,推出一些定理,使之成为数学体系,在这方面,古希腊数学家欧几里得是个典范,他所著的《几何原本》就是在几个公理的基础上研究了平面几何中的大多数问题。在这里,哪怕是最基本的常用的原始概念都不能直观描述,而要用公理加以确认或证明。 中学数学和数学科学在严谨性上还是有所区别的,如,中学数学中的数集的不断扩充,针对数集的运算律的扩充并没有进行严谨的推证,而是用默认的方式得到,从这一点看来,中学数学在严谨性上还是要差很多,但是,要学好数学却不能放松严谨性的要求,要保证内容的科学性。 比如,等差数列的通项是通过前若干项的递推从而归纳出通项公式,但要予以确认,还需要用数学归纳法进行严格的证明。 数学的抽象性表现在对空间形式和数量关系这一特性的抽象。它在抽象过程中抛开较多的事物的具体的特性,因而具有十分抽象的形式。它表现为高度的概括性,并将具体过程符号化,当然,抽象必须要以具体为基础。 至于数学的广泛的应用性,更是尽人皆知的。只是在以往的教学、学习中,往往过于注重定理、概念的抽象意义,有时却抛却了它的广泛的应用性,如果把抽象的概念、定理比作骨骼,那么数学的广泛应用就好比血肉,缺少哪一个都将影响数学的完整性。高中数学新教材中大量增加数学知识的应用和研究性学习的篇幅,就是为了培养同学们应用数学解决实际问题的能力。 二、高中数学的特点往往有同学进入高中以后不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。为什么会这样呢?让我们先看看高中数学和初中数学有些什么样的转变吧。 1、理论加强2、课程增多3、难度增大4、要求提高三、掌握数学思想高中数学从学习方法和思想方法上更接近于高等数学。学好它,需要我们从方法论的高度来掌握它。我们在研究数学问题时要经常运用唯物辩证的思想去解决数学问题。数学思想,实质上就是唯物辩证法在数学中的运用的反映。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,初步公理化思想,数形结合思想,运动思想,转化思想,变换思想。 例如,数列、一次函数、解析几何中的直线几个概念都可以用函数(特殊的对应)的概念来统一。又比如,数、方程、不等式、数列几个概念也都可以统一到函数概念。 再看看下面这个运用"矛盾"的观点来解题的例子。 已知动点Q在圆x2+y2=1上移动,定点P(2,0),求线段PQ中点的轨迹。 分析此题,图中P、Q、M三点是互相制约的,而Q点的运动将带动M点的运动;主要矛盾是点Q的运动,而点Q的运动轨迹遵循方程x02+y02=1①;次要矛盾关系:M是线段PQ的中点,可以用中点公式将M的坐标(x,y)用点Q的坐标表示出来。 x=(x0+2)/2 ②y=y0/2 ③显然,用代入的方法,消去题中的x0、y0就可以求得所求轨迹。 数学思想方法与解题技巧是不同的,在证明或求解中,运用归纳、演绎、换元等方法解题问题可以说是解题的技术性问题,而数学思想是解题时带有指导性的普遍思想方法。在解一道题时,从整体考虑,应如何着手,有什么途径?就是在数学思想方法的指导下的普遍性问题。 有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。只有在解题思想的指导下,灵活地运用具体的解题方法才能真正地学好数学,仅仅掌握具体的操作方法,而没有从解题思想的角度考虑问题,往往难于使数学学习进入更高的层次,会为今后进入大学深造带来很有麻烦。 在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。 要打赢一场战役,不可能只是勇猛冲杀、一不怕死二不怕苦就可以打赢的,必须制订好事关全局的战术和策略问题。解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。一般地,在解题中所采取的总体思路,是带有原则性的思想方法,是一种宏观的指导,一般性的解决方案。 中学数学中经常用到的数学思维策略有: 以简驭繁、数形结全、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅如果有了正确的数学思想方法,采取了恰当的数学思维策略,又有了丰富的经验和扎实的基本功,一定可以学好高中数学。 四、学习方法的改进身处应试教育的怪圈,每个教师和学生都不由自主地陷入"题海"之中,教师拍心某种题型没讲,高考时做不出,学生怕少做一道题,万一考了损失太惨重,在这样一种氛围中,往往忽视了学习方法的培养,每个学生都有自己的方法,但什么样的学习方法才是正确的方法呢?是不是一定要"博览群题"才能提高水平呢? 现实告诉我们,大胆改进学习方法,这是一个非常重大的问题。 (一) 学会听、读我们每天在学校里都在听老师讲课,阅读课本或者资料,但我们听和读对不对呢? 让我们从听(听讲、课堂学习)和读(阅读课本和相关资料)两方面来谈谈吧。 学生学习的知识,往往是间接的知识,是抽象化、形式化的知识,这些知识是在前人探索和实践的基础上提炼出来的,一般不包含探索和思维的过程。因此必须听好老师讲课,集中注意力,积极思考问题。弄清讲得内容是什么?怎么分析?理由是什么?采用什么方法?还有什么疑问?只有这样,才可能对教学内容有所理解。 听讲的过程不是一个被动参预的过程,在听讲的前提下,还要展开来分析:这里用了什么思想方法,这样做的目的是什么?为什么老师就能想到最简捷的方法?这个题有没有更直接的方法? "学而不思则罔,思而不学则殆",在听讲的过程中一定要有积极的思考和参预,这样才能达到最高的学习效率。 阅读数学教材也是掌握数学知识的非常重要的方法。只有真正阅读和数学教材,才能较好地掌握数学语言,提高自学能力。一定要改变只做题不看书,把课本当成查公式的辞典的不良倾向。阅读课本,也要争取老师的指导。阅读当天的内容或一个单元一章的内容,都要通盘考虑,要有目标。 比如,学习反正弦函数,从知识上来讲,通过阅读,应弄请以下几个问题: (1) 是不是每个函数都有反函数,如果不是,在什么情况下函数有反函数? (2)正弦函数在什么情况下有反函数?若有,其反函数如何表示? (3)正弦函数的图象与反正弦函数的图象是什么关系? (4)反正弦函数有什么性质? (5)如何求反正弦函数的值? (二) 学会思考爱因斯坦曾说:"发展独立思考和独立判断的一般能力应当始终放在首位",勤于思考,善于思考,是对我们学习数学提出的最基本的要求。一般来说,要尽力做到以下两点。 1、善于发现问题和提出问题2、善于反思与反求
194 评论(12)

相关问答