ykmsw087
数据分析工作,不仅能通过对真实数据的分析去发现问题,还能够通过经济学原理建立数学模型,对投资或其他决策是否可行进行分析,预测未来的收益及风险情况,为作出科学合理的决策提供依据。 数据分析工作用事实说话,用数据揭示工作现状和发展趋势,改变了凭印象、凭感觉决策的不科学状况,客观地抓住了工作中存在的突出问题,使这些问题无可争辩地反映在面前,促使人们不得不努力提高水平、改正问题。数据分析工作提高了工作效率,增强了管理的科学性。 无论是国家政府部门、企事业单位还是个人,数据分析工作都是进行决策和做出工作决定之前的重要环节,数据分析工作的质量高低直接决定着决策的成败和效果的好坏。它应用于经济发展的各个领域当中,人们日常工作甚至生活当中离开了数据分析工作便无法达到满意的结果甚至会导致严重的失误。 想了解更多有关数据分析方面的详情,推荐咨询达内教育。达内教育独创TTS0教学系统,达内OMO教学模式,全新升级,线上线下交互学习,满足学生多样化学习需求;同时,拥有经验丰富的讲师进行课程的讲授,对标企业人才标准,制定专业学习计划,囊括主流热点技术,运用理论知识+学习思维+实战操作,打造完整学习闭环;更有企业双选会,让学生就业更顺利。感兴趣的话点击此处,免费学习一下 
数据分析的意义主要体现在哪些方面呢?(一) 数据分析工作能完整地、正确地反映客观情况为了完整地、正确地反映客观情况的全貌,就必须在实事求是的原则的指导下,经过对大量的、丰富的统计资料和数据进行加工制作和分析研究,才能做出科学的判断,并编写成数据分析报告。这比一般的报表数据更集中、更系统、更全面地反映客观实际,也便于人们的阅读、理解和利用。(二) 数据分析工作能发挥监督的重要手段数据分析部门掌握有大量丰富的统计数据及资料,比较全面、准确地掌握和了解社会及该公司经济运行的状态和发展变化情况,对数据的口径范围和来龙去脉熟悉,因而能较好地承担监督检查和企业运营相关部门的方针政策的贯彻执行情况、发展规划和生产经营计划的完成情况、以及生产经营责任制和各项重要经济指标的完成情况等任务。 (三) 数据分析工作能实现管理科学化和统计参与决策数据分析部门利用数据资料丰富的优势,开展分析研究,透过事物的表面现象深入到事物的内在本质,由感性认识阶段上升到理性认识阶段,实现认识运动的质的飞跃,从而提示事物的现状及其内在联系和发展规律,不仅有利于领导和有关部门客观全面地认识该公司经济活动的历史、现状及其发展趋势,促进管理水平的提高,而且有利于制定正确的决策和计划,以充分发挥数据分析促进管理、参与决策的重要作用。(四) 数据分析工作有利于数据资料的深度开发利用进行数据分析的目的都是为了可以给企业带来更多的商业价值以及帮助企业规避或者减少风险带来的损失,提高数据质量,为企业解决问题。(五) 数据分析工作有利于提高数据分析人员的素质进行数据处理的过程是一个复杂的过程,这个环节当中,从数据的收集到数据筛选、数据分析都有可能产生错误,因此我们需要在各个环节中对错误的数据进行甄别,特别是数据处理的阶段,可以很好的对数据进行一个清理的过程。当然不仅仅是数据处理的过程,每一个环节都需要相关的技术人员通过一定合理性分析找出质量不高的数据,或者进行错误数据的判定,它要求数据分析人员不仅需要有数据分析基础知识,还要有一定的经济理论和政策水平;不仅需要了解数据分析的方法,还要了解数据分析的来龙去脉,了解有关的经济技术状况;不仅要有一定的文化水平和分析归纳能力,还要具有一定的写作能力和技巧。这不仅仅需要的是技术,也是对数据分析人员素质的考验。
在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。例如J开普勒通过分析行星角位置的观测数据,找出了行星运动规律。又如,一个企业的领导人要通过市场调查,分析所得数据以判定市场动向,从而制定合适的生产及销售计划。因此数据分析有极广泛的应用范围。网络营销对网络营销的意义在中国,尽管网络营销的概念很火,但网络营销的效率低于一些发达国家也是事实。无论是门户广告、搜索引擎广告,还是广告联盟,从行业平均转化率上看,都要低于国外较为成熟国家的水平。据估计,国内的Bounce rate(蹦失率,即用户只浏览第一页即离开的比例)介于90%~99%之间,而欧美的Bounce rate则是70%左右。诚然,国内的网络营销环境处于发展之中,环境不那么尽如人意,但中国互联网络信息中心分析师孙秀秀认为,出现这种情况的很多责任在投放广告的企业方,在于对营销背后的数据分析工作的不重视,没有精确定位有效的客户群,导致大量的展示给了不相关的网民。通常,广告投放前的数据分析可以分为两步走。第一步:描述目标群体。比如,目标群体是18~25岁,上网购物的年轻女性。第二步:描述此群体的网络活动轨迹。也就是说,知道目标客户群上什么网站、做什么事、在什么时间地点能够找到他非常重要。实际上,论覆盖面,网络营销还远远赶不上传统媒体。2009年底中国的互联网普及率为9%,而同期中国电视的普及率却已经超过80%。但是,仍旧有很多有远见的企业选择网络营销。其中的一个重要原因是,网络营销的全过程都可以被追踪到,通过数据分析可以随时调整投放方式。采用的分析方法如下:1、描述性统计分析包括样本基本资料的描述,作各变量的次数分配及百分比分析,以了解样本的分布情况。此外,以平均数和标准差来描述市场导向、竞争优势、组织绩效等各个构面,以了解样本企业的管理人员对这些相关变量的感知,并利用t检验及相关分析对背景变量所造成的影响做检验。2、Cronbach’a信度系数分析信度是指测验结果的一致性、稳定性及可靠性,一般多以内部一致性(consistency)来加以表示该测验信度的高低。信度系数愈高即表示该测验的结果愈一致、稳定与可靠。针对各研究变量的衡量题项进行Cronbach’a信度分析,以了解衡量构面的内部一致性。一般来说,Cronbach’a仅大于0.7为高信度,低于0.35为低信度(Cuieford,1965),0.5为最低可以接受的信度水准(Nunnally,1978)。3、探索性因素分析(exploratory factor analysis)和验证性因素分析(confirmatory factor analysis)用以测试各构面衡量题项的聚合效度(convergent validity)与区别效度(discriminant validity)。因为仅有信度是不够的,可信度高的测量,可能是完全无效或是某些程度上无效。所以我们必须对效度进行检验。效度是指工具是否能测出在设计时想测出的结果。收敛效度的检验根据各个项目和所衡量的概念的因素的负荷量来决定;而区别效度的检验是根据检验性因素分析计算理论上相关概念的相关系数,检定相关系数的95%信赖区间是否包含1.0,若不包含1.0,则可确认为具有区别效度(Anderson,1987)。4、结构方程模型分析(structural equations modeling)由于结构方程模型结合了因素分析(factor analysis)和路径分析(path analysis),并纳入计量经济学的联立方程式,可同时处理多个因变量,容许自变量和因变量含测量误差,可同时估计因子结构和因子关系。容许更大弹性的测量模型,可估计整个模型的拟合程度(Bollen和Long,1993),因而适用于整体模型的因果关系。在模型参数的估计上,采用最大似然估计法(Maximum Likelihood,ML);在模型的适合度检验上,以基本的拟合标准(preliminary fit criteria)、整体模型拟合优度(overall model fit)以及模型内在结构拟合优度(fit of internal structure of model)(Bagozzi和Yi,1988)三个方面的各项指标作为判定的标准。在评价整体模式适配标准方面,本研究采用x2(卡方)/df(自由度)值、拟合优度指数(goodness.of.f:iJt.in.dex,GFI)、平均残差平方根(root—mean.square:residual,RMSR)、近似误差均方根(root-mean—square-error-of-approximation,RMSEA)等指标;模型内在结构拟合优度则参考Bagozzi和Yi(1988)的标准,考察所估计的参数是否都到达显著水平
数据分析(Data Analysis) 数据分析概念 数据分析是指用适当的统计方法对收集来的大量第一手资料和第二手资料进行分析,以求最大化地开发数据资料的功能,发挥数据的作用。是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。 数据也称观测值,是实验、测量、观察、调查等的结果,常以数量的形式给出。 数据分析与数据挖掘密切相关,但数据挖掘往往倾向于关注较大型的数据集,较少侧重于推理,且常常采用的是最初为另外一种不同目的而采集的数据。 数据分析的目的与意义 数据分析的目的是把隐没在一大批看来杂乱无章的数据中的信息集中、萃取和提炼出来,以找出所研究对象的内在规律。 在实用中,数据分析可帮助人们作出判断,以便采取适当行动。数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程。这一过程是质量管理体系的支持过程。在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。例如J开普勒通过分析行星角位置的观测数据,找出了行星运动规律。又如,一个企业的领导人要通过市场调查,分析所得数据以判定市场动向,从而制定合适的生产及销售计划。因此数据分析有极广泛的应用范围。 数据分析的功能 数据分析主要包含下面几个功能: 简单数学运算(Simple Math) 统计(Statistics) 快速傅里叶变换(FFT) 平滑和滤波(Smoothing and Filtering) 基线和峰值分析(Baseline and Peak Analysis) 数据分析的类型 在统计学领域,有些人将数据分析划分为描述性统计分析、探索性数据分析以及验证性数据分析;其中,探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧重于已有假设的证实或证伪。 探索性数据分析:是指为了形成值得假设的检验而对数据进行分析的一种方法,是对传统统计学假设检验手段的补充。该方法由美国著名统计学家约翰·图基(John Tukey)命名。 定性数据分析:又称为“定性资料分析”、“定性研究”或者“质性研究资料分析”,是指对诸如词语、照片、观察结果之类的非数值型数据(或者说资料)的分析。 数据分析步骤 数据分析有极广泛的应用范围。典型的数据分析可能包含以下三个步: 1、探索性数据分析,当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。 2、模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。 3、推断分析,通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。 数据分析过程实施 数据分析过程的主要活动由识别信息需求、收集数据、分析数据、评价并改进数据分析的有效性组成。 一、识别信息需求 识别信息需求是确保数据分析过程有效性的首要条件,可以为收集数据、分析数据提供清晰的目标。识别信息需求是管理者的职责管理者应根据决策和过程控制的需求,提出对信息的需求。就过程控制而言,管理者应识别需求要利用那些信息支持评审过程输入、过程输出、资源配置的合理性、过程活动的优化方案和过程异常变异的发现。 二、收集数据 有目的的收集数据,是确保数据分析过程有效的基础。组织需要对收集数据的内容、渠道、方法进行策划。策划时应考虑: ① 将识别的需求转化为具体的要求,如评价供方时,需要收集的数据可能包括其过程能力、测量系统不确定度等相关数据; ② 明确由谁在何时何处,通过何种渠道和方法收集数据; ③ 记录表应便于使用; ④ 采取有效措施,防止数据丢失和虚假数据对系统的干扰。 三、分析数据 分析数据是将收集的数据通过加工、整理和分析、使其转化为信息,通常用方法有: 老七种工具,即排列图、因果图、分层法、调查表、散步图、直方图、控制图; 新七种工具,即关联图、系统图、矩阵图、KJ法、计划评审技术、PDPC法、矩阵数据图; 四、数据分析过程的改进 数据分析是质量管理体系的基础。组织的管理者应在适当时,通过对以下问题的分析,评估其有效性: ① 提供决策的信息是否充分、可信,是否存在因信息不足、失准、滞后而导致决策失误的问题; ② 信息对持续改进质量管理体系、过程、产品所发挥的作用是否与期望值一致,是否在产品实现过程中有效运用数据分析; ③ 收集数据的目的是否明确,收集的数据是否真实和充分,信息渠道是否畅通; ④ 数据分析方法是否合理,是否将风险控制在可接受的范围; ⑤ 数据分析所需资源是否得到保障。
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。数据也称观测值,是实验、测量、观察、调查等的结果,常以数量的形式给出。数据分析在我们日常经营分析工作中主要有三大作用: 1,现状分析 简单来说就是告诉你过去发生了什么具体体现在: 第一,告诉你企业现阶段的整体运营情况,通过各个经营指标完成情况来衡量,以说明企业整体运营是好了还是坏了?好的程度如何?坏的程度又到哪里? 第二,告诉你企业各个业务发展及构成情况,让你了解企业各业务发展及变动情况,对企业运营情况有更深入的了解 现状分析一般通过日常通报来完成此项工作,如日报,周报,月报等日常通报形式2,原因分析 简单来说就是告诉你为什么发生了 经过第一阶段的现状分析,对企业的运营情况有了基本了解,但不知道运营情况具体好在哪里?差在哪里?是什么原因引起的?这时就需要开展原因分析,以进一步确定业务变动的具体原因如2012年2月运营收入环比2012年1月运营收入下降5%,是什么原因导致的呢?是各个业务收入都出现下降?还是个别业务收入下降引起的?是各个地区业务收入都出现下降?还是个别地区业务收入下降引起的?这就需要我们开展原因分析,进一步确定收入下降的具体原因,以便运营策略做出调整与优化 原因分析一般通过专题分析开展来完成此项工作,根据企业运营情况选择开展3,预测分析 简单来说就是告诉你将来发生什么 在了解企业运营现状后,有时还需要对企业未来发展趋势作出预测,为制定企业运营目标及策略提供有效的参考决策依据,以保证企业的可持续健康发展 预测分析一般通过专题分析开展来完成此项工作,预测分析一般在制定企业季度,年度等计划时开展,开展频率没有现状分析及原因分析频率高