yan20094001
您好,以下论述希望对您有帮助:(来自于电子发烧友论坛,集成电路的发展趋势与设计挑战)伴随着 CMOS 集成电路特征尺寸越来越小,并逐渐逼近物理极限,未来集成电路技术 的发展将沿着按比例缩小(More Moore)和功能的多样化(More than Moore)的两个方向发展。其中"More Moore"即为继续按照进一步缩小的方向发展,该发展方向包括 在空间尺度上继续缩小、并提高集成度的"几何缩小"和 3 维集成、多核结构等不单纯追求 尺寸缩小的"等效缩小"两个方面,其发展总体目标都是为了使 Moore 定律得以继续。而 "More than Moore"则是追求集成系统的多样性,其总体目标是将更多的数字和非数字功能模块集成到系统中。从三个方面分析集成电路的发展趋势与设计面临的挑战:1)、单芯片向机电光异质集成、多功能一体化发展 由于工艺水平不断提升,单片集成的晶体管数目继续快速增长,单片集成度将更高,片上存储容量更大,IO 带宽更高,片上集成外设和应用型 IP 将更加丰富。集成电路上晶体管数目仍将以符合摩尔定律的大约 18 到 24 个月翻一番的指数速度增长。2002 年 Pentium M 的晶体管数量是 91 亿个,2007 年 Penryn 的晶体管数量己经发展到 2 亿个。2009 年 32 纳米的处理器问世,晶体管数将达到 19 亿个。摩尔定律会继续有效, 这将意味着晶体管密度还会迅速增加,预计到 2030 年,单片集成的晶体管数将达数千亿以 上。晶体管集成数量越多,芯片功能也将越丰富。片上存储器将更大。预计到 2020 年,嵌入式 CPU 与 DSP 片上集成的存储器容量将达50MB 以上,到 2030 年,嵌入式 CPU 与 DSP 片上集成的存储器容量将达数百 MB 以上。 通用 CPU 集成的片上存储器将更大。集成能力和功能密度进一步提高,片上外设和应用型 IP 更加丰富。通过更快(如存储 器的 DDR 接口)、更多的外部接口增加多点处理的实时性;通过更为标准、通用的接口增 加可用性,如 PCI、GPIO、MsBSP 接口;片上将实现大规模片上网络,确保多核之间高效 通讯;通过多芯片的接口(如 RapidIO、HPI、LINKs)增加多机连接的高效性;视频 IP 等。TI 的 BluetoothBRF6150 在 5 cm2 的芯片上全面集成了逻辑、内存、模拟、电源/稳压器管理与 RF 功能;单芯片手机解决方案更是将数字基带、内存、逻辑、RF、电源管理、模拟基 带集于一身;视频 DM642 将 10 个 IC 集于一片。随着应用的不断发展,系统需要进一步小 型化,单个 SoC 芯片集成更多器件、更多功能的趋势还将继续。微电子和机械、光器件融为一体,实现异质集成。微电子、光学和 MEMS 的交叉领域 面临未来最大的挑战和机遇。集成电台频率、光传感和信号处理器的智能微系统能够以接近实时的方式将搜集来的数据转化为行动的信息。融合、集成数模电路、光电器件、射频和功 率器件以及传感和微机械为一体的“纳光机电”集成电路芯片有望在 2020 年以前研制成功, 并在 2030 年以前实现产业化,成为未来集成电路发展的新的增长点,并为信息产业的发展 带来广阔的发展空间。2)、基于纳米工艺和材料的集成电路芯片将快速发展,基于量子和光计算等非传统计 算机制的新概念集成电路芯片将获得实际应用硅器件采用下一代光刻技术,继续向微细化方向发展。随着特征尺寸的一次次缩小,目前微电子的加工工艺己达到 35nm 水平,漂移速度饱和、沟道杂质起伏等微观物理效应逐渐 显现。预计到 2020 年,工艺水平将达到 11nm,到 2030 年,工艺水平将接近 4nm,硅器件 将达到发展的极限。随着硅技术限制障碍的增大,集成电路芯片将探究采用新电子器件、新结构、新设计系 统和新制造方法,实现低成本、快速和可靠的计算、存储和通信。非传统计算(包括光计算、 生物计算、量子计算等)越来越受到学者的关注以及各国政府财政的资助。2000 年 12 月,英特尔(Intel)公司率先开发出栅极长度为 30 纳米的单晶体管;2001 年 11 月,英特尔宣布己开发出栅长仅为 15 纳米的新型晶体管,同时单个晶体管的实际工作 频率己经达到了 63THz。英特尔发布的 15 纳米晶体管采用“耗尽型衬底晶体管(depleted substrate transistor)”的新型结构和绝缘硅技术及“高 k 栅电介质”材料,从而使制造出的芯片 的晶体管数量可以达到现有微处理器的 25 倍,运行速度提高 10 倍。2002 年 12 月,IBM 宣 布了当前世界上最细小的晶体管加工技术。利用该技术生产出的晶体管栅长仅为 6 纳米。能 够以如此之小的尺寸制造出可实际动作的晶体管,意味着芯片的晶体管数量可以达到现有微 处理器的 100 倍以上。多栅晶体管技术是一种新型电路结构技术。传统晶体管是每个晶体管只有一个栅用来控 制电流在两个结构单元之间通过或中断,进而形成计算中所需的“0”与“1”。而多栅晶体管技 术是每个晶体管有两个或三个栅,从而提高了晶体管控制电流的能力(即计算能力),并降 低了功耗,减少了电流间的相互干扰。目前,英特尔、AMD 和 IBM 公司己分别在实验室成 功开发出多栅晶体管。2003 年 9 月,AMD 公布了采用全耗尽型绝缘硅(Fully-depleted SOI, FDSOI)、硅错、三栅(Tri-Gate)和镇硅金属栅(NiSi)的栅长为 20 纳米的硅晶体管。IBM 则己开始致力于将双栅晶体管技术应用于芯片的生产,其硅错生产工艺等方面的进展会加快 双栅晶体管技术的产品化。英特尔于 2003 年 6 月在实验室实现了栅长为 30 纳米的三栅晶体 管,预计 在 2010 年前后实现三栅晶体管技术的产品化,并逐渐使三栅晶体管成为未来生产 出尺寸更小、处理性能更强的芯片的关键技术。3D 芯片技术是 IBM 公司、Matrix 半导体公司等研发的未来芯片技术。在一块芯片的设 计中,将晶体管封装成两层或三层以上。这种技术通过充分利用立体空间,在差不多同样大 小的芯片里,将数量成倍的晶体管封装进去,缩短了晶体管之间金属连接导线的长度,有助 于增强芯片的性能。纳米材料界己研制出许多新技术。例如双稳态单分子开关,因为许多单分子表现出良好 的双稳态特性,可作为可控开关器件,用作存储器和逻辑器件。碳纳米管也是纳米材料界最 为关注的材料之一,碳纳米管直径只有 1 纳米至 2 纳米,只是硅晶体管尺寸的 1/500。因其超常的能量及半导体性能而被认为最有可能在未来取代硅,成为生产晶体管及微处理器的主要材料。此外,碳纳米管投入运行时产生的热量和功耗都比晶体管要小得多。IBM 科学家 己经研制出世界上最小的计算机逻辑电路——一个由单分子碳组成的双晶体管元件。单电子 晶体管的用途非常广泛,可以用作超高密度存储、超高灵敏度电流计。纳米材料和纳米电子 技术在将物理器件尺寸推到量子极限的同时,也会将器件功耗降低 1-2 个数量级。随着硅光技术的成熟,光计算技术将逐步成熟,开始部分替代目前的单纯硅电计算器件。 光互连技术将更多的在未来集成电路芯片中使用。Intel 在 DARPA 资助下己经开发了能够支 持 340GHz 主频互连的光检测器,能支持超过 100 核以上的处理器实现。另外,非冯诺依曼体系结构的计算系统,如量子计算和生物计算技术从目前来看仍然 是面向特定应用的计算模式。对于密钥管理、加密解密和海量信息筛选等特定应用,非传统 的计算模式要比传统计算系统高效数个数量级。但特定计算模式的物理器件尚难以大规模制 备,在未来 10-20 年,量子计算和生物计算会突破器件制备和实际应用障碍,在特定领域发 挥作用。工艺发展面临物理极限,新的物理机制将被集成电路芯片所采用。世界各国正在积极推 动技术创新,通过开辟新的技术途径,突破原技术的物理极限限制。超导器件、量子器件、 单电子器件和分子器件的研究,为集成电路的长远发展提供了新的技术增长点。预计到 2030 年在未来 10 到 20 年内,基于纳米管、超导、量子、分子和光计算等新物理机制的新概念集 成电路芯片将获得实际应用,主频可望提升到数百 GHz,并将对信息产业带来革命性的影 响。3)设计方法朝向系统级和纳米尺度物理级两极的发展,成为未来 10-20 年的重要方向 工艺技术的进步为系统设计者提供了更多的资源来实现更高性能的芯片,也导致了芯片 设计复杂度的大幅度增加。一支现代处理器设计队伍动辄几百到几千人,但设计能力的增长还是远远赶不上复杂度提高的步伐,验证能力更是成为芯片设计的瓶颈。 为了应对设计复杂性的挑战,基于平台的设计方法将成为主流技术,针对不同类型的应用领域,都有相应的芯片设计平台。例如,针对无线通信、媒体处理、控制、卫星平台等领 域,都会有成熟的设计平台。随着集成电路复杂度的提升和 SOC 的迅速发展,更方便的支撑 SOC 系统级设计将成为 设计技术发展的重要方向。高层抽象描述语言越来越重要。使用 C、SystemC、systemVerilog 或更高层次的语言进行系统级描述是发展的必然。未来,人们在设计片上系统时,会首先将 应用行为用软件语言描述出来,通过编译映射到硬件资源上,使硬件资源和软件描述一一对 应,从而实现用软件描述一个应用,继而映射出一个硬件结构的设计方法。片上系统调试设 计的自动化设计方法将成为重要的研究方向。未来的调试工具应当像验证工具一样融入片上 系统设计流程,并和其它工具结合起来,实现调试设计自动化。基于片上网络的片上系统调 试和 SOC 的测试技术都有待进一步研究。系统日益复杂,验证系统正确性的难度越来越大,验证技术也越来越重要,从设计后验 证演化到在设计开始就考虑可验证、易验证,以大大提高验证的效率,降低系统验证的难度。 形式验证工具将得到更大的发展和更广泛的应用。随着晶体管数目的增加以及主频的提高,功耗问题越来越突出。现代的通用处理器功耗 峰值己经高达上百瓦。例如, AMD Opteron 是 95 瓦,英特尔的安腾II己超过 100 瓦。如 果功耗超过 150 瓦,无论是芯片的封装还是主板的供电能力,都己经难以为继了。在移动计 算领域,功耗更是压倒一切的指标。因此如何降低功耗的问题己经十分迫切。虽然每个晶体 管的功耗随着特征尺寸的缩小有所减少,但晶体管数目的增加以及主频的提高使得整个芯片 的功耗大幅度增加。此外,纳米级工艺中晶体管的漏电量大幅度增加更对功耗增加起着推波 助澜的作用。在 65 纳米工艺的时候,二氧化硅绝缘层的厚度己经降低至 2 纳米,约为 5个硅原子层的厚度,隧道穿越引起的漏电电流急剧增加。如果沿用目前的电路和结构,到2018 年左右,微处理器芯片的功耗将超过封装功耗极限(200W/mm2)的 4 倍(即达到1KW/mm2)。低功耗设计技术,如动态 Vt、门控时钟、电源岛、动态电压与频率调整、多 Vt 晶体管、体偏置,将会得到更多的应用。可以预见,在未来的 20 年里芯片工作电压将会 持续降低,超低电压电路技术将在芯片设计中得到广泛应用。必须探索新的结构,通过包括 工艺技术、物理设计、体系结构设计、系统软件以及应用软件设计的共同努力来降低功耗。时钟系统和时钟树的设计将更加复杂。在复杂的芯片系统中,时钟功耗所占的比重超过30%。纳米级芯片上的性能参数(如介电常数、掺杂浓度等)的漂移变化会导致时钟树产生 很大偏差(Clock Skew),需要结合不同工作环境下的晶体管性能参数变化,对时钟树的结 构进行优化调整,保证在各种工作环境下达到时钟偏差的最小化和均衡化,保证芯片性能的 可靠和稳定。此外,以异步全局信号取代时钟将成为复杂芯片设计的重要方法。全局异步、 局部同步(GALS)将成为重要的设计方法。异步时钟技术的进展取决于商用 EDA 工具的 支持,支持异步设计的 EDA 工具将继续得到发展。互连问题更加重要。集成度的提高意味着线宽变窄,信号在片内传输单位距离所需的延 迟也相应增大。在现代的高性能微处理器中,信号在一个时钟周期内传输的距离只相当芯片 尺寸的十分之一左右。导致连线延迟而不是晶体管翻转速度将越来越成为影响处理器主频的 主要因素。需要通过预防(如限制最大线长)、分析及修复等手段防止线间串扰对正确性或 性能的影响,并在信号完整性分析中避免由于过于保守而牺牲性能。CMP 工艺过程中导致 的 互 连 线 金属 厚 度、 宽度 的 偏 离 程度 成 倍增 加, 由 此 引 发的 互 连线 延时 仿 真 误 差可 达15%-30%,这是导致目前 100nm 以下工艺 IC 设计失败的主要因素之一。从上世纪九十年代 开始,集成电路设计方法学发生了以器件为中心的第一代设计转移到以互连线为中心的第二 代设计的变革。可靠性问题日益突出。随着摩尔定律的延续,芯片特征尺寸进一步按比例缩小,在单芯 片上集成数十亿晶体管己成为可能。与此同时,传统的考虑故障容忍的容错方法成本较高, 且其有效性受到失效速率上升的严重影响。统计设计和分析方法将占主导地位。冗余技术与 自修复技术会在设计中得到普遍应用。必须研究使电路和系统从故障中自动恢复的新原理, 从缺陷容忍、故障容忍和差错容忍等方面研究支持芯片高可靠设计的新结构、新方法,从而 提高芯片成品率,降低成本,构造稳定可靠、性能可预测的系统。可制造性问题将得到更多的关注。器件尺寸减小,会造成纵向电流强度增大,引起热载 流子效应,造成集成电路失效。参数变化的增加,掩膜版制作成本和数据的爆炸式增长,以 及光刻设备的限制为未来集成电路的可制造性设计带来了巨大的挑战。纳米尺度集成电路的 可制造问题突出表现为版图上规则的几何图形无法在硅片上正确地制造。设计规则检查的复 杂性将会增加,设计规则将会演化为一个二重甚至三重的系统。光刻设备的精度限制要求在 设计流程中更直接的考虑刻度增强技术(RET),如光学邻近效应校正(OPC)和相移掩膜 (PSM)技术等保证芯片能够正确制造。在设计阶段考虑可制造性和成品率问题是解决成品 率下降的有效方法。该方法将会导致一个与最终电路实现结合更加紧密的设计流程,在 RTL 级 的 工 具 中 就 需 要 将 RET 和 OPC 的 因 素 考 虑 进 去 。 可 制 造 性 设 计 (DFM:Design for Manufacturability)和成品率驱动的设计(DFY:Design for Yield)成为新一轮国际微电子学术和 产业竞争的新的制高点。对于目前和将来的设计而言,显式地考虑制造工艺中片内以及片间 的不确定性将势在必行,对制造过程中各种参数变化的考虑应当渗透到设计的每一个步骤。 
现代电力电子技术浅探电力电子技术是研究采用电力电子器件实现对电能的控制和变换的科学,是介于电气工程三大主要领域--电力、电子和控制之间的交叉学科,在电力、工业、交通、航空航天等领域具有广泛的应用。电力电子技术的应用已经深入到工业生产和社会生活的各个方面,成为传统产业和高新技术领域不可缺少的关键技术,可以有效地节约能源。一、电力电子技术的发展现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。1、整流器时代大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。2、逆变器时代七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。3、变频器时代进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。二、电力电子技术的应用1、一般工业工业中大量应用各种交直流电动机。直流电动机有良好的调速性能,给其供电的可控整流电源或直流斩波电源都是电力电子装置。近年来,由于电力电子变频技术的迅速发展,使得交流电机的调速性能可与直流电机相媲美,交流调速技术大量应用并占据主导地位。大至数千kW的各种轧钢机,小到几百W的数控机床的伺服电机,以及矿山牵引等场合都广泛采用电力电子交直流调速技术。一些对调速性能要求不高的大型鼓风机等近年来也采用了变频装置,以达到节能的目的。还有些不调速的电机为了避免起动时的电流冲击而采用了软起动装置,这种软起动装置也是电力电子装置。电化学工业大量使用直流电源,电解铝、电解食盐水等都需要大容量整流电源。电镀装置也需要整流电源。电力电子技术还大量用于冶金工业中的高频、中频感应加热电源、淬火电源及直流电弧炉电源等场合。2、交通运输电气化铁道中广泛采用电力电子技术。电气机车中的直流机车中采用整流装置,交流机车采用变频装置。直流斩波器也广泛用于铁道车辆。在未来的磁悬浮列车中,电力电子技术更是一项关键技术。除牵引电机传动外,车辆中的各种辅助电源也都离不开电力电子技术。电动汽车的电机靠电力电子装置进行电力变换和驱动控制,其蓄电池的充电也离不开电力电子装置。一台高级汽车中需要许多控制电机,它们也要靠变频器和斩波器驱动并控制。飞机、船舶需要很多不同要求的电源,因此航空和航海都离不开电力电子技术。如果把电梯也算做交通运输,那么它也需要电力电子技术。以前的电梯大都采用直流调速系统,而近年来交流变频调速已成为主流。3、电力系统电力电子技术在电力系统中有着非常广泛的应用。据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。电力系统在通向现代化的进程中,电力电子技术是关键技术之一。可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。直流输电在长距离、大容量输电时有很大的优势,其送电端的整流阀和受电端的逆变阀都采用晶闸管变流装置。近年发展起来的柔性交流输电(FACTS)也是依靠电力电子装置才得以实现的。无功补偿和谐波抑制对电力系统有重要的意义。晶闸管控制电抗器(TCR)、晶闸管投切电容器(TSC)都是重要的无功补偿装置。近年来出现的静止无功发生器(SVG)、有源电力滤波器(APF)等新型电力电子装置具有更为优越的无功功率和谐波补偿的性能。在配电网系统,电力电子装置还可用于防止电网瞬时停电、瞬时电压跌落、闪变等,以进行电能质量控制,改善供电质量。在变电所中,给操作系统提供可靠的交直流操作电源,给蓄电池充电等都需要电力电子装置。4、电子装置用电源各种电子装置一般都需要不同电压等级的直流电源供电。通信设备中的程控交换机所用的直流电源以前用晶闸管整流电源,现在已改为采用全控型器件的高频开关电源。大型计算机所需的工作电源、微型计算机内部的电源现在也都采用高频开关电源。在各种电子装置中,以前大量采用线性稳压电源供电,由于高频开关电源体积小、重量轻、效率高,现在已逐渐取代了线性电源。因为各种信息技术装置都需要电力电子装置提供电源,所以可以说信息电子技术离不开电力电子技术。5、家用电器照明在家用电器中占有十分突出的地位。由于电力电子照明电源体积小、发光效率高、可节省大量能源,通常被称为“节能灯”,它正在逐步取代传统的白炽灯和日光灯。变频空调器是家用电器中应用电力电子技术的典型例子。电视机、音响设备、家用计算机等电子设备的电源部分也都需要电力电子技术。此外,有些洗衣机、电冰箱、微波炉等电器也应用了电力电子技术。电力电子技术广泛用于家用电器使得它和我们的生活变得十分贴近。6、其他不间断电源(UPS)在现代社会中的作用越来越重要,用量也越来越大,在电力电子产品中已占有相当大的份额。航天飞行器中的各种电子仪器需要电源,载人航天器中为了人的生存和工作,也离不开各种电源,这些都必需采用电力电子技术。传统的发电方式是火力发电、水力发电以及后来兴起的核能发电。能源危机后,各种新能源、可再生能源及新型发电方式越来越受到重视。其中太阳能发电、风力发电的发展较快,燃料电池更是备受关注。太阳能发电和风力发电受环境的制约,发出的电力质量较差,常需要储能装置缓冲,需要改善电能质量,这就需要电力电子技术。当需要和电力系统联网时,也离不开电力电子技术。为了合理地利用水力发电资源,近年来抽水储能发电站受到重视。其中的大型电动机的起动和调速都需要电力电子技术。超导储能是未来的一种储能方式,它需要强大的直流电源供电,这也离不开电力电子技术。核聚变反应堆在产生强大磁场和注入能量时,需要大容量的脉冲电源,这种电源就是电力电子装置。科学实验或某些特殊场合,常常需要一些特种电源,这也是电力电子技术的用武之地。以前电力电子技术的应用偏重于中、大功率。现在,在1kW以下,甚至几十W以下的功率范围内,电力电子技术的应用也越来越广,其地位也越来越重要。这已成为一个重要的发展趋势,值得引起人们的注意。总之,电力电子技术的应用范围十分广泛。从人类对宇宙和大自然的探索,到国民经济的各个领域,再到我们的衣食住行,到处都能感受到电力电子技术的存在和巨大魅力。这也激发了一代又一代的学者和工程技术人员学习、研究电力电子技术并使其飞速发展。电力电子装置提供给负载的是各种不同的直流电源、恒频交流电源和变频交流电源,因此也可以说,电力电子技术研究的也就是电源技术。电力电子技术对节省电能有重要意义。特别在大型风机、水泵采用变频调速方面,在使用量十分庞大的照明电源等方面,电力电子技术的节能效果十分显著,因此它也被称为是节能技术。