你甜到我啦
一、与时俱进的更新教学理念 教师要积极的与时俱进,转变原有的教学观念。以往的高中数学教学过程中,大多侧重于对各种数学知识的讲授。在新课程大背景下,教师要积极的更新教学理念,将教学重点放在培养学生的学习能力上。因此,在具体的教学活动中,教师应该大胆的抛弃以往的“注入式”教学模式,积极开展“启发式”教学。引导学生分析各种数学问题,并启发学生思考问题,并运用学过的数学知识来解决实际问题。同时,教师还要注意对学生的学习过程进行反思,思考学生的学习效果以及存在的问题等,然后予以合理的总结和引导。 二、营造良好的教学氛围 在高中数学教学过程中,良好的教学气氛十分重要。因此,教师要注意积极的营造出良好的课堂氛围,从而有效的激发出学生的学习积极性。在高中阶段,学生需要学习的科目较多难度较大,整体学习压力较大。而且,很多学生都认为高中数学十分枯噪乏味,甚至晦涩难懂,学习积极性不高。加上数学本身具有较强的严谨性院,因此实际课堂气氛往往会流于便沉闷,无法调动起学生的学习积极性院。所以,在具体的教学实践中,教师便要注意准确的把握学生的实际情况,并结合教材内容,联系学生日常生活中较为熟悉的各种数学问题展开教学。尽可能的激发学生的兴趣,提高教学效率。 三、充分保证学生的主体地位 在教学过程中,学生是主体,所有教学活动的开展都要紧密围绕学生这个中心。但是,就目前的实际情况来看,在很多高中数学教学活动中,教师仍然占据着主体地位,主宰着整个课堂。处于这样的模式之下,学生只能十分被动的、机械的跟随教师的脚步,接受教师对各种数学知识的讲授。在这样的教学模式下,学生显然无法很好的开展学习活动。所以,教师要注意积极的转变自身的角色,充分保证学生的主体地位。时刻将自己放在服务者和引导者的位置上,并始终围绕学生为主体这个中心来开展各项教学活动。并积极的通过各种方式,为学生提供足够的发挥自身主体性院的空间。例如,在课堂上,教师要注意和学生进行互动,并鼓励学生随时举手发表自己的意见。 四、积极完善教学方法 俗话说,“教无定法”。对高中数学来讲,涉及到大量的数学知识,每节课的具体教学内容和教学任务以及教学目标等都各不相同。因此,教师要注意积极的完善教学方法,针对不同的教学内容和教学目标等,选用合适的教学方法,展开针对性较强的教学。例如,在讲解立体几何相关知识的时候,教师便可以应用演示法,向学生展示各种几何模型。并借助教学模型,更好的引导学生理解各种几何结论。而且,在一节课中,按照实际教学需要,教师还可以积极的将多种教学方法结合在一起使用。同时,教师还要注意全面把握学生的实际情况,尽可能的提高教学方法的针对性。总之,只要能够为教学活动服务,都是好的教学方法。 五、将现代化技术引课堂 随着时代的发展,越来越多的现代化技术开始被大量的应用到高中数学的教学过程中,因此,教师要注意熟练掌握一定的现代化教学技术,并将其合理的应用于教学活动中。高中数学涉及到大量的概念和公式等,单纯由教师进行口头讲授,学生大多会感到十分枯噪乏味。对于一些难度较大的知识点,还会出现难于理解的现象,影响教学效果。此时,教师便可以积极的将各种现代化技术利用引入课堂。课前,教师可以先对教学内容进行深入的分析,然后将教学内容制作成PPT,并从网络上收集一些有趣的教学素材和案例等,制作出内容丰富,趣味十足的课件。然后,在教学过程中,教师便可以适时的将PPT展示给学生们观看。并带领学生一起观察课件内容,分析各种数学问题。这样一来,不但有效的增加了课堂容量,还可以提高学生的兴趣,有效提高教学的效率。例如,在讲解立体几何中一些问题的时候,教师便可以利用多媒体技术,将题目和相关图形直观的展示在学生们的面前。在讲解棱锥体积公式推导过程的时候,也可以利用电脑进行演示。 
数学论文 一、数学技能的含义及作用 技能是顺利完成某种任务的一种动作或心智活动方式。它是一种接近自动化的、复杂而较为完善的动作系统,是通过有目的、有计划的练习而形成的。数学技能是顺利完成某种数学任务的动作或心智活动方式。它通常表现为完成某一数学任务时所必需的一系列动作的协调和活动方式的自动化。这种协调的动作和自动化的活动方式是在已有数学知识经验基础上经过反复练习而形成的。如学习有关乘数是两位数的乘法计算技能,就是在掌握其运算法则的基础上通过多次的实际计算而形成的。数学技能与数学知识和数学能力既有密切的联系,又有本质上的区别。它们的区别主要表现为:技能是对动作和动作方式的概括,它反映的是动作本身和活动方式的熟练程度;知识是对经验的概括,它反映的是人们对事物和事物之间相互联系的规律性的认识;能力是对保证活动顺利完成的某些稳定的心理特征的概括,它所体现的是学习者在数学学习活动中反映出来的个体特征。三者之间的联系,可以比较清楚地从数学技能的作用中反映出来。 数学技能在数学学习中的作用可概括为以下几个方面: 第一,数学技能的形成有助于数学知识的理解和掌握; 第二,数学技能的形成可以进一步巩固数学知识; 第三,数学技能的形成有助于数学问题的解决; 第四,数学技能的形成可以促进数学能力的发展; 第五,数学技能的形成有助于激发学生的学习兴趣; 第六,调动他们的学习积极性。 二、数学技能的分类 小学生的数学技能,按照其本身的性质和特点,可以分为操作技能(又叫做动作技能)和心智技能(也叫做智力技能)两种类型。 l.数学操作技能。操作技能是指实现数学任务活动方式的动作主要是通过外部机体运动或操作去完成的技能。它是一种由各个局部动作按照一定的程序连贯而成的外部操作活动方式。如学生在利用测量工具测量角的度数、测量物体的长度,用作图工具画几何图形等活动中所形成的技能就是这种外部操作技能。操作技能具有有别于心智技能的一些比较明显的特点:一是外显性,即操作技能是一种外显的活动方式;二是客观性,是指操作技能活动的对象是物质性的客体或肌肉;王是非简约性,就动作的结构而言,操作技能的每个动作都必须实施,不能省略和合并,是一种展开性的活动程序。如用圆规画圆,确定半径、确定圆心、圆规一脚绕圆心旋转一周等步骤,既不能省略也不能合并,必须详尽地展开才能完成的任务。 2.数学心智技能。数学心智技能是指顺利完成数学任务的心智活动方式。它是一种借助于内部言语进行的认知活动,包括感知、记忆、思维和想象等心理成分,并且以思维为其主要活动成分。如小学生在口算、笔算、解方程和解答应用题等活动中形成的技能更多地是一些数学心智技能。数学心智技能同样是经过后天的学习和训练而形成的,它不同于人的本能。另外,数学心智技能是一种合乎法则的心智活动方式,“所谓合乎法则的活动方式是指活动的动作构成要素及其次序应体现活动本身的客观法则的要求,而不是任意的”。这些特性,反映了数学心智技能和数学操作技能的共性。数学心智技能作为一种以思维为主要活动成分的认知活动方式,它也有着区别于数学操作技能的个性特征,这些特征主要反映在以下三个方面。 第一,动作对象的观念性。数学心智技能的直接对象不是具有物质形式的客体本身,而是这种客体在人们头脑里的主观映象。如20以内退位减法的口算,其心智活动的直接对象是“想加法算减法”或其他计算方法的观念,而非某种物质化的客体。 第二,动作实施过程的内隐性。数学心智技能的动作是借助内部言语完成的,其动作的执行是在头脑内部进行的,主体的变化具有很强的内隐性,很难从外部直接观测到。如口算,我们能够直接了解到的是通过学生的外部语言所反映出来的计算结果,学生计算时的内部心智活动动作是无法看到的。 第三,动作结构的简缩性。数学心智技能的动作不像操作活动那样必须把每一个动作都完整地做出来,也不像外部言语那样对每一个动作都完整地说出来,它的活动过程是一种高度压缩和简化的自动化过程。因此,数学心智技能中的动作成分是可以合并、省略和简化的。如20以内进位加法的口算,学生熟练以后计算时根本没有去意识“看大数”、“想凑数”、“分小数”、“凑十”等动作,整个计算过程被压缩成一种脱口而出的简略性过程。 三、数学技能的形成过程 1.数学操作技能的形成过程。 数学操作技能作为一种外显的操作活动方式,它的形成大致要经过以下四个基本阶段。 (1)动作的定向阶段。这是操作技能形成的起始阶段,主要是学习者在头脑里建立起完成某项数学任务的操作活动的定向映象。包括明确学习目标,激起学习动机,了解与数学技能有关的知识,知道技能的操作程序和动作要领以及活动的最后结果等内容。概括起来讲,这一阶段主要是了解“做什么”和“怎样做”两方面的内容。如画角,这一阶段主要是了解需画一个多少度的角(即知道做什么)和画角的步骤(即怎么做),以此给画角的操作活动作出具体的定向。动作定向的作用是在头脑里初步建立起操作的自我调节机制;通过对“做什么”和“怎么做”的了解而明确实施数学活动的程序与步骤,从而保证在操作中更好地掌握其动作的活动方式。 (2)动作的分解阶段。这是操作技能进入实际学习的最初阶段,其作法是把某项数学技能的全套动作分解成若干个单项动作,在老师的示范下学生依次模仿练习,从而掌握局部动作的活动方式。如用圆规按照给定的半径画圆,在这一阶段就可把整个操作程序分解成三个局部动作:①把圆规的两脚张开,按照给定的半径定好两脚间的距离;②把有针尖的一脚固定在一点上,确定出圆心;③将有铅笔尖的一脚绕圆心旋转一周,画出圆。通过对这三个具有连续性的局部动作的依次练习,即可掌握画圆的要领。学生在这一阶段学习的方式主要是模仿,一方面根据老师的示范进行模仿;另一方面也可以根据有关操作规则的文字描述进行模仿,如根据几何作图规则对各个动作活动方式的表述进行模仿。模仿不一定都是被动的和机械的,“模仿可以是有意的和无意的;可以是再造性的,也可以是创造性的。”②模仿是数学操作技能形成的一个不可缺少的条件。 (3)动作的整合阶段。在这一阶段,把前面所掌握的各个局部动作按照一定的顺序连接起来,使其形成一个连贯而协调的操作程序,并固定下来。如画圆,在这一阶段就可将三个步骤综合起来形成一体化的操作系统。这时由于局部动作之间尚处在衔接阶段,所以动作还难以维持稳定性和精确性,动作系统中的某些环节在衔接时甚至还会出现停顿现象。不过,总的来讲这一阶段动作之间的相互干扰逐步得到排除,操作过程中的多余动作也明显减少,已形成完整而有序的动作系统。 (4)动作的熟练阶段。这是操作技能形成的最后阶段,在这一阶段通过练习而形成的数学活动方式能适应各种变化情况,其操作表现出高度完善化的特点。动作之间相互干扰和不协调的现象完全消除,动作具有高度的正确性和稳定性,并且不管在什么条件下全套动作都能流畅地完成。如这时的画圆,不需要意志控制就能顺利地完成全套动作,并且能充分保证其正确性。上述分析表明,数学操作技能的形成要经过“定向→分解→整合→熟练”的发展过程。在这一过程中每一个发展阶段都有自己的任务:定向阶段的主要任务是掌握操作的结构系统和每一个步骤操作的要领;分解阶段的主要任务是对活动的操作系列进行分解,并逐一模仿练习;整合阶段的主要任务是在动作之间建立联系,使活动协调一体化;熟练阶段的任务则主要是使整个操作过程高度完善化和自动化。 2.数学心智技能的形成过程。 关于数学心智技能形成过程的研究,人们比较普遍地采用了原苏联心理学家加里培林的研究成果。加里培林认为,心智活动是一个从外部的物质活动到内部心智活动的转化过程,既内化的过程。据此,在这里我们把小学生数学心智技能的形成过程概括为以下四个阶段。 (1)活动的认知阶段。这是数学心智活动的认知准备阶段,主要是让学生了解并记住与活动任务有关的知识,明确活动的过程和结果,在头脑里形成活动本身及其结果的表象。如学习除数是小数的除法计算技能,在这一步就是让学生回忆并记住除法商不变性质和除数是整数的小数除法法则等知识,在此基础上明确计算的程序和每一步计算的具体方法,以此在头脑里形成除数是小数除法计算过程的表象。认知阶段实际上也是一种心智活动的定向阶段,通过这一阶段,学习者可以建立起进行数学心智活动的初步自我调节机制,为后面顺利进行认知活动提供内部控制条件。这一阶段的主要任务是在头脑里确定心智技能的活动程序,并让这种程序的动作结构在头脑里得到清晰的反映。 (2)示范模仿阶段。这是数学心智活动方式进入具体执行过程的开始,这一阶段学生把在头脑里已初步建立起来的活动程序计划以外显的操作方式付诸执行。不过,这种执行通常是在老师指导示范下进行的,老师的示范通常是采用语言指导和操作提示相结合的方式进行的,即在言语指导的同时呈现活动过程中的某些步骤。如计算乘数是两位数的乘法时,一方面根据运算法则指导运算步骤;另一方面在表述运算规定的同时重点示范用乘数十位上的数去乘被乘数所得的部分积的对位,以此让学生在老师的帮助、指导下顺利地掌握两位数乘多位数计算的活动方式。在这一阶段,学生活动的执行水平还比较低,通常停留在物质活动和物质化活动的水平上。“所谓物质活动是指动作的客体是实际事物,所谓物质化活动是指活动不是借助于实际事物本身,而是以它的代替物如模拟的教具、学具,乃至图画、图解、言语等进行的”。③如解答复合应用题,在这一步学生通常就是借助线段图进行分析题中数量关系的智力活动的。 (3)有意识的言语阶段。这一阶段的智力活动离开了活动的物质和物质化的客体而逐步转向头脑内部,学生通过自己的言语指导而进行智力活动,通常表现为一边操作一边口中念念有词。如两位数加两位数的笔算,在这一步学生往往是一边计算,口中一边念:相同数位对位,从个位加起,个位满十向十位进1。很明显,这时的计算过程是伴随着对法则运算规定的复述进行的。在这一阶段,学生出声的外部言语活动还会逐步向不出声的外部言语活动过渡,如两位数加两位数的笔算,在本阶段的后期学生往往是通过默想法则规定的运算步骤进行计算的。这一活动水平的出现,标志着学生的活动已开始向智力活动水平转化。 (4)无意识的内部言语阶段。这是数学心智技能形成的最后的一个阶段,在这一阶段学生的智力活动过程有了高度的压缩和简化,整个活动过程达到了完全自动化的水平,无需去注意活动的操作规则就能比较流畅地完成其操作程序。如用简便方法计算45+99×99+54,在这一阶段学生无需去回忆加法交换律和结合律、乘法分配律等运算定律,就能直接先合并45和54两个加数,然后利用乘法分配律进行计算,即原式=(45+54)+99×99=99×(1+99)=99×100=9900,整个计算过程完全是一种流畅的自动化演算过程。在这一阶段,学生的活动完全是根据自己的内部言语进行思考的,并且总是用非常简缩的形式进行思考的,活动的中间过程往往简约得连自己也察觉不到了,整个活动过程基本上是一种自动化的过程。 四、数学技能的学习方法 1.数学操作技能的学习方法。学习数学操作技能的基本方法是模仿练习法和程序练习法。前者是指学生在学习中根据老师的示范动作或教材中的示意图进行模仿练习,以掌握操作的基本要领,在头脑里形成操作过程的动作表象的一种学习方法。用工具度量角的大小、测量物体的长短、几何图形的作图、几何图形面积和体积计算公式推导过程中的图形转化等技能一般都可以通过模仿练习法去掌握。如推导平行四边形面积计算公式时,把平行四边形转化成长方形的操作技能就可模仿(人教版)教材插图(如图所示)的操作过程去练习和掌握。小学生的学习更多的是模仿老师的示范动作,所以老师的示范对小学生数学动作技能的形成尤为重要。教师要充分运用示范与讲解相结合、整体示范与分步示范相结合等措施,让学生准确无误地掌握操作要领,形成正确的动作表象。所谓程序练习法,就是运用程序教学的原理将所要学习的数学动作技能按活动程序分解成若干局部的动作先逐一练习,最后将这些局部的动作综合成整体形成程序化的活动过程。如用量角器量角的度数、用三角板画垂线和平行线、画长方形等技能的学习都可以采用这种方法。用这种方法学习数学动作技能,分解动作时注意突出重点,重点解决那些难以掌握的局部动作,这样可以有效地提高学习效率。 2.数学心智技能的学习方法。学生的心智技能主要是通过范例学习法和尝试学习法去获得的。范例学习法是指学习时按照课本提供的范例,将数学技能的思维操作程序一步一步地展现出来,然后根据这种程序逐步掌握技能的心智活动方式。整数、小数、分数的四则计算,课本几乎都提供了计算的范例,学习时只需要根据范例有序地进行计算即可掌握计算方法。如被除数和除数末尾都有0的除法的简便算法,课本安排了如下范例,学习时只需要明确范例所反映的计算程序和方法,并按照这种程序和方法进行计算即可掌握被除数和除数末尾都有0的除法简便计算的技能。尝试学习法是指在学习中主要由学生自己去尝试探索问题解决的方法和途径,并在不断修正错误的过程中找出解决问题的操作程序,进而获得数学技能。这是一种探究式的发现学习法,总结运算规律和性质并运用它们进行简便计算、解答复合应用题、求某些比较复杂的组合图形的面积或体积等技能都可以运用这种学习方法去掌握。这种方法较多地运用于题目本身具有较强探究性的变式问题解决的学习,如用简便方法计算1001÷5,由于学生在前面已经掌握除法商不变性质,练习时就可通过将除数和被除数部乘以8使除数变成100的途径去实现计算的简便。尝试学习法虽然有利于培养学生的探索精神和解决问题的能力,但耗时太多,学习时最好是将它和范例学习法结合起来,两种学习方法互为补充,这样数学技能的学习就会更加富有成效。
在学习、工作中,大家都经常看到论文的身影吧,借助论文可以有效训练我们运用理论和技能解决实际问题的的能力。如何写一篇有思想、有文采的论文呢?下面是我整理的数学教学议论文范文,仅供参考,欢迎大家阅读。 《数学课程标准》明确指出:义务教育阶段的数学课程,其基本出发点是推动学生全面、持续、和谐的发展,它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际理由抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。因此,我们要充分注意学生各种能力的培养,从实际出发,努力激发学生的学习兴趣,充分调动学生的学习积极性和主动性,教会学生学习,教会学生深思,教会学生探索,使学生真正成为学习的主人,在新课标的指导下,我认为新的课堂教学应该注意以下理由: 一、激发学生潜能,鼓励探索创新 建构主义学习理论认为,知识不是通过教师传授而得到的,而是学习者在一定的社会文化背景下,借助其他人(包括教师、家长、同学)的帮助,利用必要的学习资源,主动地采用适合自身的学习策略,通过作用建构的方式而获得的,这要求教师在课堂教学中,要根据教学内容创设情境,激发学生的学习热情,挖掘学生的潜能,鼓励学生大胆创新与实践,要让学生在自主探索和合作交流过程中获得基本数学知识和技能,使他们觉得每项知识都是他们实践创造出来的,而不是教师强加给他们的。 二、转变教育观念,发扬教学民主 数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,在教学过程中,教师要转变思想,更新教育观念,把学习的主动权交给学生,鼓励学生积极参与教学活动,教师要走出演讲者的角色,成为全体学生学习的组织者、激励者、引导者、协调者和合作者,学生能自己做的事教师不能代劳,教师的主要任务应是在学生的学习过程中,在恰当的时候给予恰当的引导与帮助,要让学生通过亲身经历、体验数学知识的形成和应用过程来获取知识,发展能力。例如在学习同类项概念时,我针对初一学生的年龄特点,组织找同类项朋友的游戏。具体做法是这样的:把事先准备好的配组同类项卡片发给每个学生,一个同学找到自己的同类项朋友后,被挤出座位的另一个学生再去找自己的同类项朋友,比一比谁找得既快又准。这种生动的形式和有趣的策略能使学生充分活动,学习兴趣大增,学生在愉悦的气氛中掌握了确定同类项的策略和合并同类项的法则。 三、联系生活实际,培养学习兴趣 某些学生不想学习或讨厌学习,是因为他们觉得学习枯燥无味,认为学习数学就是把那些公式、定理、法则和解题规律记熟,然后反反复复地做题。新教材的内容编排切实体现了数学来源于生活又服务于生活的思想,通过生活中的数学理由或我们身边的数学事例来阐明数学知识的形成与发展过程,在教学过程中,教师要利用好教材列举的与我们生活息息相关的数学素材和形象的图表来培养学生的学习兴趣。教师要尊重学生,热爱学生,关心学生,经常给予学生鼓励和帮助,学习上要及时总结表彰,使学生充分感受到成功的喜悦,感受到学习是一件愉快的事情,要通过自己的教学,使学生乐学、愿学、想学,感受到学习是一件很有趣的事情,值得为学习而勤奋,不会有一点苦的感觉。 例如在学习实践与探索中的储蓄理由时,我提前一周布置学生到本镇的几家银行去调查有关不同种类储蓄的利率理由。教学中,让每个学生先展示自己所到银行收集到的各种各样有关储蓄的信息,然后再按每四人一组根据收集到的信息编写有关储蓄的应用题,教师可以有选择地展示学生的学习成果,让全班学生相互讨论、合作攻关,最后选派一些小组的代表作总结发言,老师点评,对做得较好的同学进行表扬。通过这样教学,学生在愉快中学到了知识,收到了良好的效果。 新教材中编排的有关内容,如地砖的铺设、图标的收集、打折销售等等,教师都可以充分利用,让学生走出课堂去学习,体会数学与生活的密切联系,培养学生的学习兴趣。 四、关注个体差异,促使人人发展 《数学课程标准》指出:数学教育要面向全体学生,实现:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展,数学教育要推动每一个学生的发展,即要为所有学生打好共同基础,也要注意发展学生的个性和特长,由于各种不同的因素,学生在数学知识、技能、能力方面和志趣上存在差异,教师在教学中要承认这种差异,因材施教,因势利导,要从学生实际出发,兼顾学习有困难和学有余力的学生,通过多种途径和策略,满足他们的学习需求,发展他们的数学才能。 新教材设计了不少如深思、探索、讨论、观察、试一试、做一做等理由,教师可根据实际情况组织学生小组合作学习,在小组成员的安排上优、中、差各级知识水平学生要合理搭配,以优等生的思维方式来启迪差生,以优等生的学习热情来感染差生,在让学生独立深思时,要尽量多留一些时间,不能让优等生的回答剥夺差生的深思,对于数学成绩较好的学生,教师也可另外选择一些较灵活的理由让他们深思、探究,以扩大学生的知识,提高数学成绩。 五、媒体辅助教学,提高教学效益 《数学课程标准》指出:教师要充分利用现代教育技术辅助教学,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决理由的有力工具,致力于转变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。因此,在课堂教学中,教师要根据教学内容恰当地运用计算机进行辅助教学,为学生提供更为广阔的自由活动的时间和空间,提供更为丰富的数学学习资源。