夏之幻mm
2025-06-19 17:30:12
古代数学史: ①古希腊曾有人写过《几何学史》,未能流传下来。 ②5世纪普罗克洛斯对欧几里得《几何原本》第一卷的注文中还保留有一部分资料。 ③中世纪阿拉伯国家的一些传记作品和数学著作中,讲述到一些数学家的生平以及其他有关数学史的材料。 ④12世纪时,古希腊和中世纪阿拉伯数学书籍传入西欧。这些著作的翻译既是数学研究,也是对古典数学著作的整理和保存。 近代西欧各国的数学史: 是从18世纪,由J蒙蒂克拉、C博絮埃、AC克斯特纳同时开始,而以蒙蒂克拉1758年出版的《数学史》(1799~1802年又经Jde拉朗德增补)为代表。从19世纪末叶起,研究数学史的人逐渐增多,断代史和分科史的研究也逐渐展开,1945年以后,更有了新的发展。19世纪末叶以后的数学史研究可以分为下述几个方面。 ①通史研究 代表作可以举出MB康托尔的《数学史讲义》(4卷,1880~1908)以及CB博耶(1894、1919DE史密斯(2卷,1923~1925)、洛里亚(3卷,1929~1933)等人的著作。法国的布尔巴基学派写了一部数学史收入《数学原理》。以尤什凯维奇为代表的苏联学者和以弥永昌吉、伊东俊太郎为代表的日本学者也都有多卷本数学通史出版。1972年美国M克莱因所著《古今数学思想》一书,是70年代以来的一部佳作。 ②古希腊数学史 许多古希腊数学家的著作被译成现代文字,在这方面作出了成绩的有JL海贝格、胡尔奇、TL希思等人。洛里亚和希思还写出了古希腊数学通史。20世纪30年代起,著名的代数学家范·德·瓦尔登在古希腊数学史方面也作出成绩。60年代以来匈牙利的A萨博的工作则更为突出,他从哲学史出发论述了欧几里得公理体系的起源。 ③古埃及和巴比伦数学史 把巴比伦楔形文字泥板算书和古埃及纸草算书译成现代文字是艰难的工作。查斯和阿奇博尔德等人都译过纸草算书,而诺伊格鲍尔锲而不舍数十年对楔形文字泥板算书的研究则更为有名。他所著的《楔形文字数学史料研究》(1935、1937)、《楔形文字数学书》(与萨克斯合著,1945)都是这方面的权威性著作。他所著《古代精密科学》(1951)一书,汇集了半个世纪以来关于古埃及和巴比伦数学史研究成果。范·德·瓦尔登的《科学的觉醒》(1954)一书,则又加进古希腊数学史,成为古代世界数学史的权威性著作之一。 ④断代史和分科史研究 德国数学家(C)F克莱因著的《19世纪数学发展史讲义》(1926~1927)一书,是断代体近现代数学史研究的开始,它成书于20世纪,但其中所反映的对数学的看法却大都是19世纪的。直到1978年法国数学家J迪厄多内所写的《1700~1900数学史概论》出版之前,断代体数学史专著并不多,但却有(CH)H外尔写的《半个世纪的数学》之类的著名论文。对数学各分支的历史,从数论、概率论,直到流形概念、希尔伯特23个数学问题的历史等,有多种专著出现,而且不乏名家手笔。许多著名数学家参预数学史的研究,可能是基于(J-)H庞加莱的如下信念,即:“如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状”,或是如H外尔所说的:“如果不知道远溯古希腊各代前辈所建立的和发展的概念方法和结果,我们就不可能理解近50年来数学的目标,也不可能理解它的成就。” ⑤历代数学家的传记以及他们的全集与《选集》的整理和出版 这是数学史研究的大量工作之一。此外还有多种《数学经典论著选读》出现,辑录了历代数学家成名之作的珍贵片断。 ⑥专业性学术杂志 最早出现于19世纪末,MB康托尔(1877~1913,30卷)和洛里亚(1898~1922,21卷)都曾主编过数学史杂志,最有名的是埃内斯特勒姆主编的《数学宝藏》(1884~1915,30卷)。现代则有国际科学史协会数学史分会主编的《国际数学史杂志》。 中国数学史: 中国以历史传统悠久而著称于世界,在历代正史的《律历志》“备数”条内常常论述到数学的作用和数学的历史。例如较早的《汉书·律历志》说数学是“推历、生律、 制器、 规圆、矩方、权重、衡平、准绳、嘉量,探赜索稳,钩深致远,莫不用焉”。《隋书·律历志》记述了圆周率计算的历史,记载了祖冲之的光辉成就。历代正史《列传》中,有时也给出了数学家的传记。正史的《经籍志》则记载有数学书目。 在中国古算书的序、跋中,经常出现数学史的内容。 如刘徽注《九章算术》序 (263)中曾谈到《九章算术》形成的历史;王孝通“上缉古算经表”中曾对刘徽、祖冲之等人的数学工作进行评论;祖颐为《四元玉鉴》所写的序文中讲述了由天元术发展成四元术的历史。宋刊本《数术记遗》之后附录有“算学源流”,这是中国,也是世界上最早用印刷术保存下来的数学史资料。程大位《算法统宗》(1592)书末附有“算经源流”,记录了宋明间的数学书目。 以上所述属于零散的片断资料,对中国古代数学史进行较为系统的整理和研究,则是在乾嘉学派的影响下,在清代中晚期进行的。主要有:①对古算书的整理和研究,《算经十书》(汉唐间算书)和宋元算书的校订、注释和出版,参预此项工作的有戴震(1724~1777)、李潢(?~1811)、阮元(1764~1849)、沈钦裴(1829年校算《四元玉鉴》)、罗士琳(1789~1853)等人 ②编辑出版了《畴人传》(数学家和天文学家的传记),它“肇自黄帝,迄于昭(清)代,凡为此学者,人为之传”,它是由阮元、李锐等编辑的(1795~1799)。其后,罗士琳作“补遗”(1840),诸可宝作《畴人传三编》(1886),黄钟骏又作《畴人传四编》(1898)。《畴人传》,实际上就是一部人物传记体裁的数学史。收入人物多,资料丰富,评论允当,它完全可以和蒙蒂克拉的数学史相媲美。 利用现代数学概念,对中国数学史进行研究和整理,从而使中国数学史研究建立在现代科学方法之上的学科奠基人,是李俨和钱宝琮。他们都是从五四运动前后起,开始搜集古算书,进行考订、整理和开展研究工作的 经过半个多世纪,李俨的论文自编为《中算史论丛》(1~5集,1954~1955),钱宝琮则有《钱宝琮科学史论文集》(1984)行世。从20世纪30年代起,两人都有通史性中国数学史专著出版,李俨有《中国算学史》(1937)、《中国数学大纲》(1958);钱宝琮有《中国算学史》(上,1932)并主编了《中国数学史》(1964)。钱宝琮校点的《算经十书》(1963)和上述各种专著一道,都是权威性著作。 从19世纪末,即有人(伟烈亚力、赫师慎等)用外文发表中国数学史方面的文章。20世纪初日本人三上义夫的《数学在中国和日本的发展》以及50年代李约瑟在其巨著《中国科学技术史》(第三卷)中对中国数学史进行了全面的介绍。有一些中国的古典算书已经有日、英、法、俄、德等文字的译本。在英、美、日、俄、法、比利时等国都有人直接利用中国古典文献进行中国数学史的研究以及和其他国家和地区数学史的比较研究。
对数学应用意识的考察是高考数学命题的一个重要方面,要求学生能够运用所学的数学知识、思想和方法,构造数学模型,将实际问题转化成数学问题,以及转化以后如何综合运用学科内知识解决数学问题。而三角函数的应用题考查也是高考命题的热点之一。由于导数为我们研究函数提供了一个新的方法,在导数和三角的交汇点处命题将是高考命题的一个方向。 以下通过几个例子来谈一谈。 例 如图所示的等腰梯形是一个简易水槽的横断面,已知水槽的最大流量与横断面的面积成正比,比例系数为() (Ⅰ)试将水槽的最大流量表示成关于函数; (Ⅱ)求当多大时,水槽的最大流量最大 解析:(1)由题意其中。 (2)令 又因为,而在上递减,当=60时水槽的流量最大。 点评:导数为求函数的最值,单调性,极值等提供了新的方法,在解题的时候要注意这一方法的应用。随着高考命题改革的不断深入,高考命题强调知识之间的交叉、渗透和综合。从学科的整体高度考虑问题,在知识网络的交汇点处设计试题,是命题的一种趋势,我们应当研究此类试题,掌握其解法,不断提高解题能力。 类题如图,矩形纸片的边24,25,点、分别在边与上现将纸片的右下角沿翻折,使得顶点翻折后的新位置恰好落在边上设,,关于的函数为,试求: (1)函数的解析式;(2)函数的定义域; (3)的最小值 解:(1)设,则 由于,, 则,即 而,, 所以,解得 故 (2)因为,故当点E与点A重合时, = 当点E向右运动时,BE长度变小,为保持点B1在边AD上,则点F要向上运动,从而BA的长度变大,则就变小,当点F与点C重合时, 取得最小值 又当点F与点C重合时,有,即,解之得 或(舍) 所以,又是锐角,所以 综上,函数的定义域为 (3)记,因为,所以函数上单调递减,则当时,取得最大值为 从而的最小值为 例 (2008江苏高考17).某地有三家工厂,分别位于矩形ABCD的顶点A,B,及CD的中点P处,已知km, ,为了处理三家工厂的污水,现要在矩形ABCD的区域上(含边界),且A,B与等距离的一点O处建造一个污水处理厂,并铺设排污管道AO,BO,OP,设排污管道的总长为ykm。(I)按下列要求写出函数关系式:设,将表示成的函数关系式;设,将表示成的函数关系式。(II)请你选用(I)中的一个函数关系式,确定污水处理厂的位置,使三条排水管道总长度最短。解析:(I)①由条件可知PQ垂直平分AB,,则故,又,所以。②,则,所以,所以所求的函数关系式为。选择函数模型①。 。令得,又,所以。当时,,是的减函数;时,,是的增函数。所以当时。当P位于线段AB的中垂线上且距离AB边处。 点评:本题第二小问中若选用函数模型②则,令=0则 ,即,故当时三条排水管道总长度最短。本题能体现数学应用,关注社会生活。以污水处理为背景,体现试卷设计问题背景的公平性,对推动数学教学中关注身边的数学起到良好的导向。 类题 如图,是沿太湖南北方向道路,为太湖中观光岛屿, 为停车场,km.某旅游团游览完岛屿后,乘游船回停车场Q,已知游船以km/h的速度沿方位角的方向行驶,.游船离开观光岛屿3分钟后,因事耽搁没有来得及登上游船的游客甲为了及时赶到停车地点与旅游团会合,立即决定租用小船先到达湖滨大道M处,然后乘出租汽车到点Q(设游客甲到达湖滨大道后能立即乘到出租车).假设游客甲乘小船行驶的方位角是,出租汽车的速度为66km/h.(Ⅰ)设,问小船的速度为多少km/h时,游客甲才能和游船同时到达点Q;(Ⅱ)设小船速度为10km/h,请你替该游客设计小船行驶的方位角,当角余弦值的大小是多少时,游客甲能按计划以最短时间到达.解:(Ⅰ) 如图,作,为垂足.,,,在△中, (km), =(km).在△中,(km) .设游船从P到Q所用时间为h,游客甲从经到所用时间为h,小船的速度为 km/h,则 (h), (h). 由已知得:,,∴.∴小船的速度为km/h时,游客甲才能和游船同时到达. (Ⅱ)在△中,(km),(km).∴(km). ∴=.∵, ∴令得:.当时,;当时,.∵在上是减函数,∴当方位角满足时,t最小,即游客甲能按计划以最短时间到达.
数学中的测量在现实生活中的应用 论死亡时间的推断在法医学中,关于死亡时间的推断有多种方法,如:尸体的尸斑状况,肌肉僵硬程度等各种尸体现象。由于人死后,体内产热停止、排汗停止、各种调节机制停止,并且尸体所在位置、尸体形状均保持不变(除非人为改变),因而尸体体温的下降会有比较稳定的规律,所以从尸体温度来进行死亡时间推断是比较准确可靠的。 现在给出死亡时间推断的定量方法:设尸体温度为T,周围环境温度为C 在理想状况下,温度的变化率(dT/dt)与该物体的温度和周围环境温度的差(T-C)成正比,则: dT/dt=-k*(T-C) (k>0) 其中,k是由物体与空气接触状况决定的、正的、由实验测定的常数;等号右边的负号表示当物体温度比周围环境温度高时,物体将降温(则dT/dt<0);同理,当T0,则表示物体升温。 现在解此微分方程: dT/dt=-k*(T-C) =>1/(T-C)*dT=-k*dt =>∫1/(T-C)*dT=∫-k*dt =>∫1/(T-C)*d(T-C)=∫-k*dt =>㏑(T-C)= -k*t+B (B是积分常数,由初始条件确定) =>T-C=e^(-k*t+B) (e是自然常数,e=7182818245…) (*) 设时间为0时物体的温度为T。,则: T。-C=e^(0+B) =>T。-C=e^B 把T。-C=e^B代入(*)式中,得: T-C=e^(-k*t+B)=e^(-k*t)*e^B= e^(-k*t)*( T。-C) T(t)=C+( T。-C)* e^(-k*t) 于是,物体的冷却规律为: T(t)=C+( T。-C)* e^(-k*t) 其中,C表示周围环境温度,T。表示开始计时时物体的温度,T(t)表示由T。开始经过时间t后物体的温度,k是由实验测定的正的常数。此公式可用于估算死亡时间,换一种表示形式为:t=-1/k*㏑[(T-C)/ ( T。-C)] 现在进行误差分析:(1)由于尸体状况基本保持不变(好在尸体自身不会动,否则就不再是科学问题了),因而k的值比较稳定; (2)一般情况下,周围环境温度C变化不大,可当作常数处理。 然而,现实中k与C始终会有所变化,所以为了使推断更为精确,现在对公式进行修改: (1)由于环境温度始终会有波动式的变化,可以引入周围环境温度函数C(t)进行修补; (2)事实上,虽然尸体自身状况不会对k的值造成较大影响,但是,空气对流状况、空气湿度变化会对k造成影响,因而可引入一个函数σ(t)对k进行修正,则有: k=k。+σ(t),这里,我把函数σ(t)称为修正函数。于是,我们得到更为准确的微分方程,这是解除了“理想状况”限制的更为一般的方程:dT/dt=-(k。+σ(t))*(T-C(t)) 对此方程进行移项: dT/dt+( k。+σ(t))*T=( k。+σ(t))*C(t) 为表示方便,记P(t)= k。+σ(t),Q(t)= ( k。+σ(t))*C(t) 于是上式变为: dT/dt+P(t)*T=Q(t) 不难发现,dT/dt+P(t)*T=Q(t)是一个一阶线性非齐次常微分方程。 解此方程得: T(t)= e^(-∫P(t)*dt)*[∫Q(t)* e^(∫P(t)*dt)*dt+B] 其中,P(t)= k。+σ(t),Q(t)= ( k。+σ(t))*C(t),B是积分常数,由初始条件决定。在这里,C(t)通过对周围环境温度进行记录得到,σ(t)则根据具体修正需要(如精确度)进行制定。关于死亡时间的推断是一个相当复杂的课题,在这里只是从理论角度进行了粗略的研究。 至于修正函数σ(t)的获得,将会在今后的论文中进行具体的探讨。
图论graph theory 以图为研究对象的数学分支。图论中的图指的是一些点以及连接这些点的线的总体。通常用点代表事物,用连接两点的线代表事物间的关系、图论则是研究事物对象在上述表示法中具有的特征与性质的学科 。图论的发展已有200多年的历史,它发源于18世纪普鲁士的柯尼斯堡。当地的居民想知道能否从任意一陆地出发 ,走遍联接该城的7座桥又回到原地?其条件是每座桥都经过一次并且只经过一次。(七桥问题)很多人都曾试验过,但都失败了。L欧拉把七桥问题化为一个数学问题,并给出一笔画问题的判别准则,从而判定七桥问题不存在解。这是图论发展的萌芽时期最具代表性的问题,那时不少图论问题都是围绕着游戏而产生的。从19世纪中叶开始图论进入第二个发展阶段,这个时期图论问题大量出现,诸如由“绕行世界”游戏发展起来的哈密顿问题、关于地图染色的四色问题以及与之相关联的图的可平面性问题等。这个时期也出现了以图为工具去解决其他领域中一些问题的成果,比如把树的理论应用到化学和电网络分析等。直到1936年D柯尼希发表了图论的第一本专著《有限与无限图理论》,这时图论才成为一门学科,以后图论进入第三个发展阶段。由于生产管理、军事、交通运输和计算机网络等方面提出大量实际问题的需要,特别是许多离散化问题的出现,以及由于大型高速电子计算机而使许多大规模计算问题求解成为可能,图论的理论及其应用研究得到飞速发展。尤其是网络理论的建立,图论与线性规划、动态规划等优化理论和方法的互相渗透,促使和丰富了图论的内容和应用。它在通讯网络的设计分析、电网络分析、印刷线路板分析、信号流图与反馈理论、计算机流程图等众多领域都有成功的应用。图论讨论的问题主要有两种形式。一种是问“具有某种特征的对象是否存在 ?如果存在有几个 ?或者至少有几个?”另一种是问“怎样”构造一个满足某一性质的图或子图。这些问题体现在以下5个最有兴趣的研究领域,它们是:连通性、嵌入问题、染色问题、矩阵表示以及网络流。 基本概念 所谓图指的是一个有序对G=(V,E),其中V是一个非空集合,称为顶点集合;E是V上的一个无序二元关系 ,称为边集合。称E中的每一条边和它所连接的顶点是关联的。如果某条边的两个端点重合,则称为环。如果联接两个顶点的边不止一条,则这些边称为多重边。无多重边的无环图称为简单图。如果图中任意两点间恰有一条边相联,则这样的图称为完全图。如果一个图的顶点集可以划分为两个子集,使得每一条边的两个端点分别属于这两个子集,则称该图为二部图。顶边相间的序列称为链,两端相重合的链叫做圈。以上定义的图又称无向图。将无向图各边定向之后,就构成有向图。有向图除顶点集外,还有弧集。每条弧从一个顶点(称为“头”)连接到另一个顶点(称为“尾”)。 连通性 如果对于图中的每一对顶点都存在一条链把它们联结起来,则称该图是连通的。连通性是图论研究的基本问题之一。以下列举的是有关连通性的典型问题:①欧拉路。在七桥问题中,用一个顶点代表一块陆地,当两个区域之间有桥相联时就在对应的两个顶点之间连接一条边。这样就得到与原来问题对应的一个图。所谓欧拉路指的是这样一条路,它包含该图的每一条边恰好一次。这个问题已经得到解答。欧拉路有不少应用,比如应用到城市街道单行线与双行线的合理布局,有助于控制交通运输的目的。②中国邮路问题。一个邮递员要走遍他负责的投递范围内的每一条街道,完成送信任务后回到邮局。他应按什么路线走才能使总路程最短?管梅谷教授最早提出这个问题并于1960年给出最优路线的条件和算法。因此国际上称此问题为中国邮路问题。③哈密顿问题。爱尔兰数学家WR哈密顿,在19世纪发明的绕行世界游戏引出了著名的哈密顿问题 。如果存在一条经过图G的所有顶点的简单圈,则称该图为H图。哈密顿问题就是要找出H图的特征描述,这个问题至今尚未彻底解决,此问题与四色问题及旅行售货问题密切相关,因此一直受到人们的关注。④树与图的支撑树。无圈的连通图称为树,包括图G的全部顶点的子图称为G的支撑图。如果支撑图是一棵树,则称它为支撑树。城市的交通网、电力网的布局可以归结为支撑树问题去解决,树还可以用来研究计算机的动态存贮分配和编码等。决策树是系统分析的重要工具。⑤匹配问题。安排一些人去做各种工作或者按照不同的计划要求把人们配成对,这些都属于匹配问题。它的一个基本问题是给定一个二部图,问不相邻的弧集最多能包含几条弧?这个问题可以转化为运输问题用线性规划方法求解,若用图论方法求解则更为简明方便。 嵌入问题与平面图 有一个古典难题,名叫“三井三屋”问题。问题是要求把3个井和3间屋的每一个连起来,使得连接的管线都不相交。如果这种图存在,则称它是一个平面图。一般地,如果一个图G可以画在一个曲面S上 ,使得任何两边都不相交,则称G可以嵌入到S内 。如果一个图可以嵌入到平面内,则说它是一个可平面图。嵌入概念反映两个图之间的同构对应关系。三井三屋问题在平面上是无法实现的,即它是不可平面的。很多人致力于图的可平面性研究,1930年波兰数学家CK库拉托夫斯基提出可平面图的一个重要条件,1973年中国数学家吴文俊用代数拓扑方法给出了解决平面制定问题的新途径。平面问题的研究成果已经在交通网络和印刷线路的设计等方面得到应用。 染色问题 给定一个图,如果要求把所有顶点涂上颜色,使得相邻顶点具有不同的颜色,问最少需要几种不同的颜色?这个问题叫做图的点染色问题。如果对给定图的全部边都涂上颜色,使相邻的边有不同的颜色,问至少需要几种颜色?这个问题叫做边的染色问题,边的染色问题可以转化为点染色问题,它们都归属于将一个图划分为独立子集的理论。平面图的染色问题是与四色问题紧密相联的。19世纪中叶,四色问题以猜想形式被提出来,这个猜想是说平面上任何一个地图都能够只用4种颜色给各个国家染色 ,使得任何两个相邻的国家有不同的颜色,这里两个国家相邻是指它们有一段公共边界 。100多年来数学家们一直没有攻克这个难题,直到1976年才由 KI阿佩尔等人借助计算机给出一个浩繁的证明。由于染色问题反映了广泛而深刻的实际背景,它的研究带动了整个图论的发展。 图的矩阵表示 一个图可以用几何图形表示,这种表示有直观形象的优点。图还可以用矩阵表示,它给出一个代数结构,从而可以运用代数的技巧解决图论问题,而且有利于在计算机上进行运算。每一个无向图都可以规定一个关联矩阵来表示,图的顶点对应此矩阵的行,图的边则与矩阵的列相对应。当一个顶点与边关联时,关联矩阵的相应元素为1,否则元素为零。在此基础上还可以建立回路矩阵、割集矩阵等等反映图的各种特征性质的矩阵。凭借矩阵理论的强有力的支持,图的矩阵表示理论成果不断涌现。特别应当提到的是,20世纪70年代出现了图的拟阵理论,它的发展对图的研究起到突出的促进作用。
代数图论中的几个新结论 Some New Results in Algebraic Graph Theory 王知人 周 岩 庞显庭 王知人 (Wang Zhiren), 周岩 (Zhou Yan), 燕山大学数理系,秦皇岛 066004 (The Department of Mathematics and Basic Science, Yanshan University, Qinhuangdao 066004) 庞显庭(Pang Xianting), 齐齐哈尔市联发房地产开发有限公司,齐齐哈尔 161000 (Lianfa Real Estate Developing C, Qiqihar 161000)] 摘 要 证明了几个关于克希霍夫矩阵的新定理这些定理对于图中* 树的数目计算及其在网络可靠性中的作用都是很有意义的 关键词 图论,克希霍夫矩阵,生成树 Abstract Some new theorems about Kirchhoff matrix of a * graph are These theorems are very important to calculate to * number of spanning trees and to analize the reliability of Key words graph theory, Kircchhoff matrix, number of 王知人 女,1964年5月出生硕士,讲师主要研究方向为图论和* 神经网络优化计算,发表论文10余篇_ 参考资料: 回答者:1z2y3x4w - 经理 五级 2-11 20:37
我的数学小论文加法的演变减法的演变乘法的演变除法的演变等式关系论证分数的历程 等等……