husaynsha
现在理论物理中的电磁作用理论基础是麦克斯维的电磁变换理论。这个理论可表述为:任意在空间随时间变化的电场可以激发出磁场,而在空间任意随时间变化的磁场也可以激发出电场。这个目前也是光在空间传播的理论基础。对于麦克斯维的电磁变换理论基础本身我认为他使用了这样一个物理或者说是数学模型:一个量的变化引起或者转化为了另一个不同性质的量。使用这样的模型建立一个物理方面的基础理论我认为是不完善或者说是仍然不够本质的。我的理由有两点。第一,一个量的变化引起了或者转化为了另一个不同性质的量应该是有条件的;第二,一个量的变化引起了或者转化为了另一个不同性质的量一定是有一个过程的。而他的电磁变换理论是无条件也无过程的,至少到如今仍然没有,也是无法给出的。或许有人认为这个无条件无过程的理论假设正是电磁原理中不可再深讨的本质基础,那么事实上我更愿意从更为经典的物理角度来建立一个理论并由此来分析现有的几种主要电磁作用原理的本质过程。事实上我就这样建立了一个我认为很好的理论。我在此申明我认为不能够说麦克斯维电磁变换定理是完全正确或错误,而应该说这个理论对于物理而言达到了一个怎样的本质程度。而我所建立的理论的目的是解释电磁作用更为具体的本质过程。对于迈克斯维电磁定理的那些方程我毫不怀疑它们的正确性,毕竟它们的应用是如此的成功。已经是相当成熟的理论了。而我的理论作用是电磁作用过程的具体化,这与麦克斯维理论本身是没有矛盾的。但这并不代表我的理论及解释工作没必要、没有意义。相反它的意义是非常大的。我认为数学和物理是有着本质上的差别的。他的理论可以说是限于数学上的,对于物理而言仍然是不够本质的。迈克斯维电磁定理的建立更多的是从数学入手并结合物理客观实际而得出的。所以它的实际应用性很强。但反过来对于物理本身而言它是有明显缺陷的。首先由于它的研究方法直接导致了一个问题。那就是将电磁力这个力的作用特殊化了。不光如此,从他的理论我们无法看到物质作用的具体而形象的过程,就是像牛顿力学那样的或者其它更为经典的物理过程。千万不要说这些都无所谓。不同性质的力的统一研究是物理学永远的目标。这些研究更不能只停留在数学层面上。一直以来物理学家试图尽量用原有的经典理论来解释新的物理现象和理论并不是没有道理的。所有物理学理论都应有着本质上的相同。这是对于物理学本身的发展而言的。或许你认为那对应用物理的发展没多大用处,那也是错误的想法。物理学无论本质发展还是数学相关的应用发展都需要物理理论本质性的统一。找到了这些统一性我们就才能接近物理真理。实际的物理应用也才会随之而来。过多的从数学入手显然不能达到这一目标。要解决这一问题是必须要从物理本身入手的。看看现在理论物理的发展就知道了。我认为现在的理论物理简直就是掉进了相对论和量子力学的泥潭了。而没有像牛顿力学那样的本质的发展。相对论和量子力学都是物理学家在用旧的经典理论来解释新的物理现象时才产生的新理论。不可否认它们带来的物理学上的进步。但不论这两种理论体系给物理界带来了怎样的活力和希望。但我看见的却是,这些理论的任何一点进步都像是撕开了物理真理的一座座冰山上的一角。这座冰山还没尽入眼前。却又发现了另一座冰山。人们总是不断发现新的冰山。可是却永远无法看到这些冰山的真面目。原因就是他们在建立物理理论的时候忽略了对物理本性的研究探讨。研究方法过于数学化了。这是现代物理学家不可避免要陷入的误区。原因是因为现代数学的发达。现在大家或许能够体会到物理理论统一目标的重要性了。对于这两种理论体系,我认为它们表明物理学界对物理的理解还是存在明显误区的。也就是说这两种理论的形成形态及好坏不光是目前物理学发展的问题。还应是人为的思想上的误区。这里我谈到了物理理论研究目标和入手的根本方法问题。到此为止,目的在于说明我的理论及解释工作的必要性和意义。下面继续我的理论本身。 首先我的理论实际上是从对光的电磁传播相关理论推敲而来。我认为光的波动能量在空间的传播依然需要依靠介质。而这种充满宇宙大部分(并不一定是整个宇宙)的各个角落的物质就是以太,包括原子的原子核,电子,中子,质子等都处于这样的一个环境中。以太物质的称呼和存在假设其实在国外早就提出过。但后来由于迈克逊-莫雷等实验的反面结果而否定。再加上后来麦克斯维电磁理论的发展及成功应用理论物理似乎就彻底抛弃了这个假设。不管现在我再次提出这样的一个假设看起来有多荒谬,我仍然建立了我的理论并以此来解释分析几种主要的电磁作用原理。从结果看我认为这个理论很有前途。相关的论述证明了理论本身的正确性。我认为它还另外揭示了相当重要的东西,能给物理学带来很大的进步。下面正式介绍我的理论的核心内容。 电子绕原子核的空间圆周运动在它所处的以太环境中沿其轨迹留下了一种以太的运动形式。实际上这种运动形式是电子圆周运动作用于以太而形成的,而以太的这种运动形式能反过来作用于电子并使其获得一定的动量。我用图一所示的带有箭头方向的小圈来表示,我将这个小圈叫做流圈。而它就是磁的本质。 
麦克斯韦方程组 可以得出电磁场电磁波许多特性,随便举几个例子:比如 磁场是无源场、因为旋度为零。电场在没有电荷的地方是无源的,因为散度为零。还有反射定律:入射角等于反射角;是因为电场在切向的连续性,这个还是由麦克斯韦方程组推出来的。再比如电磁波的传播规律:1电磁波的速度对麦克斯韦方程组里电场的旋度求旋度,代入另一个方程,推出来亥姆赫兹方程。这个方程表明电磁场的方程是波动方程,速度是确定的,波的速度是确定的C。电磁波是横波这个也是由电场 磁场的散度为0推出来的。 总之 电磁场的性质都可以由麦克斯韦方程组推出来的。
绝对是我自己写的论文:论声波与电磁波的异同2011年02月15日 分类:个人日记 说起波大家一定会想起两种最普通的波:声波和光波(电磁波),很多人将这两者混为一谈,这是错误的。 通俗的说,声波是用来听的,而电磁波是用来看的,当然这样说未免有些不科学。较严格的说,声波是通过介质传播的,而电磁波是通过“场”传播的,这里的场可以是电场、磁场。 声波是由物体的振动引起的,如果物体周围有介质的话,振动就会传给介质,再由介质传给其他物体,换句话说,能量是随着振动在传递。声波是机械波的一种,具有机械波的特性。声波分为横波和纵波。电磁波的性质要比声波复杂得多,电场或磁场的变化都会引起电磁波,我们知道电路状态发生改变时会引发磁场的变化,变化磁场中的导体会带电,这时的电场也是变化的,会再次产生变化的磁场,换句话说,电磁波的能量是以电与磁的形式交替传播的,变化的电场产生磁场,变化的磁场产生电场。由麦克斯韦电磁理论可知,变化的电场和变化的磁场是相互联系着的一个不可分割的统一体,即电磁场,而变化的电场和变化的磁场总是交替产生的,并且由产生的区域向周围空间传播,这就是电磁波。电磁波在空间中传播不需要介质,它是一种横波,传递着电磁场的能量。最普通的电磁波是可见光。关于光最早出现两种学说:由惠更斯提出的波动说和曾为牛顿所提倡的微粒说,惠更斯认为光是一种波动,由发光体引起,和声波一样依靠介质来传播,这种学说直到19世纪初当光的干涉和衍射现象被发现后才得到广泛承认,而牛顿认为光是由光源发出的微粒,它从光源沿直线行进至被照物,因此可以想象为一束由发光体射向被照物的高速微粒。此学说直观地解释了光的直线传播及反射、折射等现象,曾被普遍接受直到19世纪初光的干涉等现象发现后,才被波动说所推翻,但在19世纪和20世纪初,许多有光和物质相互作用的现象,如光电效应,不能用波动说来解释,这促使爱因斯坦于1905年提出光是一种具有粒子性的实物:光子,但这种观念并不摒弃光具有波动的性质,这种关于光的波粒二象性的认识被人们所认可,也是量子理论的基础。声波和电磁波 1、都能反射与折射;2、都有衍射现象(波绕过障碍物继续传播的现象);3、都能叠加(几列波相遇时,每列波都能保持各自原来的传播方向继续传播而不互相干扰,只是在重叠的区域里,任一质点的总位移等于各列波分别引起的位移的矢量和);4、都有干涉现象(频率相同的两列波叠加使某些区域的振动加强,使某些区域的振动减弱,并且振动加强和振动减弱的区域相互间隔的现象叫做波的干涉);5、都有多普勒效应(由于波源和观察者之间的相对运动,使观察者感到波的频率发生变化的现象叫做多普勒效应,举个例子便是救护车鸣着笛自你面前飞驰而过,你会发现当车距你近时和当车距你远时音调的高低不同)声波和电磁波还有一个很大的差别便是电磁波的速度要比声波快得多。腹化风雪:本人初次发表论文,请多提意见,谢谢。我写了几天,给我最佳吧