今日痴
数学作为一种文化现象,早已是人们的常识。历史地看,古希腊和文艺复兴时期的文化名人,往往本身就是数学家。最著名的如柏拉图和达·芬奇。晚近以来,爱因斯坦、希尔伯特、罗素、冯·诺依曼等文化名人也都是20世纪数学文明的缔造者。数学文化的存在价值在即将公布的高中数学课程标准中,数学文化是一个单独的板块,给予了特别的重视。许多老师会问为什么要这样做?一个重要的原因是,20世纪初年的数学曾经存在着脱离社会文化的孤立主义倾向,并一直影响到今天的中国。数学的过度形式化,使人错误地感到数学只是少数天才脑子里想象出来的“自由创造物”,数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。于是,西方的数学界有“经验主义的复兴”。怀特(LAWhite)的数学文化论力图把数学回归到文化层面。克莱因(MKline)的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩。国内最早注意数学文化的学者是北京大学的教授孙小礼,她和邓东皋等合编的《数学与文化》,汇集了一些数学名家的有关论述,也记录了从自然辩证法研究的角度对数学文化的思考。稍后出版的有齐民友的《数学与文化》,主要从非欧几何产生的历史阐述数学的文化价值,特别指出了数学思维的文化意义。郑毓信等出版的专著《数学文化学》,特点是用社会建构主义的哲学观,强调“数学共同体”产生的文化效应。以上的著作以及许多的论文,都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分揭示数学的文化内涵,肯定数学作为文化存在的价值。认识和实施数学文化教育进入21世纪之后,数学文化的研究更加深入。一个重要的标志是数学文化走进中小学课堂,渗入实际数学教学,努力使学生在学习数学过程中真正受到文化感染,产生文化共鸣,体会数学的文化品位,体察社会文化和数学文化之间的互动。那么,如何在中小学数学教学中进行数学文化教育呢?笔者认为应该从以下几个方面加以认识和实施。认识数学文化的民族性和世界性每个民族都有自己的文化,也就一定有属于这个文化的数学。古希腊的数学和中国传统数学都有辉煌的成就、优秀的传统。但是,它们之间有着明显的差异。古希腊和古代中国的不同政治文明孕育了不同的数学。古希腊是奴隶制国家。当时希腊的雅典城邦实行奴隶主的民主政治(广大奴隶不能享受这种民主)。男性奴隶主的全体大会选举执政官,对一些战争、财政大事实行民主表决。这种政治文明包含着某些合理的因素。奴隶主之间讲民主,往往需要用理由说服对方,使学术上的辩论风气浓厚。为了证明自己坚持的是真理,也就需要证明。先设一些人人皆同意的“公理”,规定一些名词的意义,然后把要陈述的命题,称为公理的逻辑推论。欧氏的《几何原本》正是在这样的背景下产生的。 中国在春秋战国时期也有百家争鸣的学术风气,但是没有实行古希腊统治者之间的民主政治,而是实行君王统治制度。春秋战国时期,也是知识分子自由表达见解的黄金年代。当时的思想家和数学家,主要目标是帮助君王统治臣民、管理国家。因此,中国的古代数学,多半以“管理数学”的形式出现,目的是为了丈量田亩、兴修水利、分配劳力、计算税收、运输粮食等国家管理的实用目标。理性探讨在这里退居其次。因此,从文化意义上看,中国数学可以说是“管理数学”和“木匠数学”,存在的形式则是官方的文书。古希腊的文化时尚,是追求精神上享受,以获得对大自然的理解为最高目标。因此,“对顶角相等”这样的命题,在《几何原本》里列入命题15,借助公理3(等量减等量,其差相等)给予证明。在中国的数学文化里,不可能给这样的直观命题留下位置。 同样,中国数学强调实用的管理数学,却在算法上得到了长足的发展。负数的运用、解方程的开根法,以及杨辉(贾宪)三角、祖冲之的圆周率计算、天元术那样的精致计算课题,也只能在中国诞生,而为古希腊文明所轻视。 我们应当充分重视中国传统数学中的实用与算法的传统,同时又必须吸收人类一切有益的数学文化创造,包括古希腊的文化传统。当进入21世纪的时候,我们作为地球村的村民,一定要溶入世界数学文化,将民族性和世界性有机地结合起来。揭示数学文化内涵,走出数学孤立主义的阴影数学的内涵十分丰富。但在中国数学教育界,常常有“数学=逻辑”的观念。据调查,学生们把数学看作“一堆绝对真理的总集”,或者是“一种符号的游戏”。“数学遵循记忆事实-运用算法-执行记忆得来的公式-算出答案”的模式[1],“数学=逻辑”的公式带来了许多负面影响。正如一位智者所说,一个充满活力的数学美女,只剩下一副X光照片上的骨架了!数学的内涵,包括用数学的观点观察现实,构造数学模型,学习数学的语言、图表、符号表示,进行数学交流。通过理性思维,培养严谨素质,追求创新精神,欣赏数学之美。半个多世纪以前,著名数学家柯朗(RCourant)在名著《数学是什么》的序言中这样写道:“今天,数学教育的传统地位陷入严重的危机。数学教学有时竟变成一种空洞的解题训练。数学研究已出现一种过分专门化和过于强调抽象的趋势,而忽视了数学的应用以及与其他领域的联系。教师学生和一般受过教育的人都要求有一个建设性的改造,其目的是要真正理解数学是一个有机整体,是科学思考与行动的基础。” 2002年8月20日,丘成桐接受《东方时空》的采访时说:“我把《史记》当作歌剧来欣赏”,“由于我重视历史,而历史是宏观的,所以我在看数学问题时常常采取宏观的观点,和别人的看法不一样。” 这是一位数学大家的数学文化阐述。 《文汇报》2002年8月21日摘要刊出钱伟长的文章《哥丁根学派的追求》,其中提到:“这使我明白了:数学本身很美,然而不要被它迷了路。应用数学的任务是解决实际问题,不是去完善许多数学方法,我们是以解决实际问题为己任的。从这一观点上讲,我们应该是解决实际问题的优秀‘屠夫’,而不是制刀的‘刀匠’,更不是那种一辈子欣赏自己的刀多么锋利而不去解决实际问题的刀匠。”这是一个力学家的数学文化观。和所有文化现象一样,数学文化直接支配着人们的行动。孤立主义的数学文化,一方面拒人于千里之外,使人望数学而生畏;另一方面,又孤芳自赏,自言自语,令人把数学家当成“怪人”。学校里的数学,原本是青少年喜爱的学科,却成为过滤的“筛子”、打人的“棒子”。优秀的数学文化,会是美丽动人的数学王后、得心应手的仆人、聪明伶俐的宠物。伴随着先进的数学文化,数学教学会变得生气勃勃、有血有肉、光彩照人。多侧面地开展数学文化研究谈到数学文化,往往会联想到数学史。确实,宏观地观察数学,从历史上考察数学的进步,确实是揭示数学文化层面的重要途径。但是,除了这种宏观的历史考察之外,还应该有微观的一面,即从具体的数学概念、数学方法、数学思想中揭示数学的文化底蕴。以下将阐述一些新视角,力求多侧面地展现数学文化。 数学和文学。数学和文学的思考方法往往是相通的。举例来说,中学课程里有“对称”,文学中则有“对仗”。对称是一种变换,变过去了却有些性质保持不变。轴对称,即是依对称轴对折,图形的形状和大小都保持不变。那么对仗是什么?无非是上联变成下联,但是字词句的某些特性不变。王维诗云:“明月松间照,清泉石上流”。这里,明月对清泉,都是自然景物,没有变。形容词“明”对“清”,名词“月”对“泉”,词性不变。其余各词均如此。变化中的不变性质,在文化中、文学中、数学中,都广泛存在着。数学中的“对偶理论”,拓扑学的变与不变,都是这种思想的体现。文学意境也有和数学观念相通的地方。徐利治先生早就指出:“孤帆远影碧空尽”,正是极限概念的意境。欧氏几何和中国古代的时空观。初唐诗人陈子昂有句云:“前不见古人,后不见来者,念天地之悠悠,独怆然而涕下。”这是时间和三维欧几里得空间的文学描述。在陈子昂看来,时间是两头无限的,以他自己为原点,恰可比喻为一条直线。天是平面,地是平面,人类生活在这悠远而空旷的时空里,不禁感慨万千。数学正是把这种人生感受精确化、形式化。诗人的想象可以补充我们的数学理解。 数学与语言。语言是文化的载体和外壳。数学的一种文化表现形式,就是把数学溶入语言之中。“不管三七二十一”涉及乘法口诀,“三下二除五就把它解决了”则是算盘口诀。再如“万无一失”,在中国语言里比喻“有绝对把握”,但是,这句成语可以联系“小概率事件”进行思考。“十万有一失”在航天器的零件中也是不允许的。此外,“指数爆炸”“直线上升”等等已经进入日常语言。它们的含义可与事物的复杂性相联系(计算复杂性问题),正是所需要研究的。“事业坐标”“人生轨迹”也已经是人们耳熟能详的词语。 数学的宏观和微观认识。宏观和微观是从物理学借用过来的,后来变成一种常识性的名词。以函数为例,初中和高中的函数概念有变量说和对应说之分,其实是宏观描述和微观刻画的区别。初中的变量说,实际上是宏观观察,主要考察它的变化趋势和性态。高中的对应则是微观的分析。在分段函数的端点处,函数值在这一段,还是下一段,差一点都不行。政治上有全局和局部,物理上有牛顿力学与量子力学,电影中有全景和细部,国画中有泼墨山水画和工笔花鸟画,其道理都是一样的。是否要从这样的观点考察函数呢? 数学和美学。“1/2+1/3=2/5 ?”是不是和谐美?二次方程的求根公式美不美?这涉及到美学观。三角函数课堂上应该提到音乐,立体几何课总得说说绘画,如何把立体的图形画在平面上。欣赏艾舍尔(MCEscher)的画、计算机画出的分形图,也是数学美的表现。总之,数学文化离不开数学史,但是不能仅限于数学史。当数学文化的魅力真正渗入教材、到达课堂、溶入教学时,数学就会更加平易近人,数学教学就会通过文化层面让学生进一步理解数学、喜欢数学、热爱数学。 
开题报告一般要总结意图,主要运用什么理论,要达到的目的。 说明主题选择的目的和意义,并指出论文写作的范围。介绍应该简短而简洁,围绕主题。说明调查的原因或目的、时间和地点、对象或范围、过程和方法以及工作人员的构成,从中引出核心问题或基本结果。 明确调查目标的时代背景、总体发展趋势、实际情况、关键考试成绩、突出情况等基本情况,明确提出核心问题或主要意见;直接总结调查结果,如肯定实践、指出问题、提示影响、解释中心内容等。序言具有锦上添花的效果,应简洁总结,直接切割主题。 论文主题选择的关键取决于澄清论文主题选择对理论基础研究的贡献,或对实践活动的帮助和具体指导。简要描述问题的起源和未来的发展,然后显示主题应该处理什么问题,即讨论的范围。最后,对您的主题选择的使用价值进行评估,以显示本文对基础理论的基本促进作用和具体指导的意义。
1)数学史的科学意义 每一门科学都有其发展的历史,作为历史上的科学,既有其历史性又有其现实性。其现实性首先表现在科学概念与方法的延续性方面,今日的科学研究在某种程度上是对历史上科学传统的深化与发展,或者是对历史上科学难题的解决,因此我们无法割裂科学现实与科学史之间的联系。数学科学具有悠久的历史,与自然科学相比,数学更是积累性科学,其概念和方法更具有延续性,比如古代文明中形成的十进位值制记数法和四则运算法则,我们今天仍在使用,诸如费尔马猜想、哥德巴赫猜想等历史上的难题,长期以来一直是现代数论领域中的研究热点,数学传统与数学史材料可以在现实的数学研究中获得发展。国内外许多著名的数学大师都具有深厚的数学史修养或者兼及数学史研究,并善于从历史素材中汲取养分,做到古为今用,推陈出新。我国著名数学家吴文俊先生早年在拓扑学研究领域取得杰出成就,七十年代开始研究中国数学史,在中国数学史研究的理论和方法方面开创了新的局面,特别是在中国传统数学机械化思想的启发下,建立了被誉为"吴方法"的关于几何定理机器证明的数学机械化方法,他的工作不愧为古为今用,振兴民族文化的典范。 科学史的现实性还表现在为我们今日的科学研究提供经验教训和历史借鉴,以使我们明确科学研究的方向以少走弯路或错路,为当今科技发展决策的制定提供依据,也是我们预见科学未来的依据。多了解一些数学史知识,也不会致使我们出现诸如解决三等分角作图、证明四色定理等荒唐事,也避免我们在费尔马大定理等问题上白废时间和精力。同时,总结我国数学发展史上的经验教训,对我国当今数学发展不无益处。 (2)数学史的文化意义 美国数学史家克莱因曾经说过:"一个时代的总的特征在很大程度上与这个时代的数学活动密切相关。这种关系在我们这个时代尤为明显"。"数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说"。数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。因而数学史是从一个侧面反映的人类文化史,又是人类文明史的最重要的组成部分。许多历史学家通过数学这面镜子,了解古代其他主要文化的特征与价值取向。古希腊(公元前600年-公元前300年)数学家强调严密的推理和由此得出的结论,因此他们不关心这些成果的实用性,而是教育人们去进行抽象的推理,和激发人们对理想与美的追求。通过希腊数学史的考察,就十分容易理解,为什么古希腊具有很难为后世超越的优美文学、极端理性化的哲学,以及理想化的建筑与雕塑。而罗马数学史则告诉我们,罗马文化是外来的,罗马人缺乏独创精神而注重实用。 (3)数学史的教育意义 当我们学习过数学史后,自然会有这样的感觉:数学的发展并不合逻辑,或者说,数学发展的实际情况与我们今日所学的数学教科书很不一致。我们今日中学所学的数学内容基本上属于17世纪微积分学以前的初等数学知识,而大学数学系学习的大部分内容则是17、18世纪的高等数学。这些数学教材业已经过千锤百炼,是在科学性与教育要求相结合的原则指导下经过反复编写的,是将历史上的数学材料按照一定的逻辑结构和学习要求加以取舍编纂的知识体系,这样就必然舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历程以及导致其演化的各种因素,因此仅凭数学教材的学习,难以获得数学的原貌和全景,同时忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料与方法,而弥补这方面不足的最好途径就是通过数学史的学习。 在一般人看来,数学是一门枯燥无味的学科,因而很多人视其为畏途,从某种程度上说,这是由于我们的数学教科书教授的往往是一些僵化的、一成不变的数学内容,如果在数学教学中渗透数学史内容而让数学活起来,这样便可以激发学生的学习兴趣,也有助于学生对数学概念、方法和原理的理解与认识的深化。 科学史是一门文理交叉学科,从今天的教育现状来看,文科与理科的鸿沟导致我们的教育所培养的人才已经越来越不能适应当今自然科学与社会科学高度渗透的现代化社会,正是由于科学史的学科交叉性才可显示其在沟通文理科方面的作用。通过数学史学习,可以使数学系的学生在接受数学专业训练的同时,获得人文科学方面的修养,文科或其它专业的学生通过数学史的学习可以了解数学概貌,获得数理方面的修养。而历史上数学家的业绩与品德也会在青少年的人格培养上发挥十分重要的作用。 中国数学有着悠久的历史,14世纪以前一直是世界上数学最为发达的国家,出现过许多杰出数学家,取得了很多辉煌成就,其渊源流长的以计算为中心、具有程序性和机械性的算法化数学模式与古希腊的以几何定理的演绎推理为特征的公理化数学模式相辉映,交替影响世界数学的发展。由于各种复杂的原因,16世纪以后中国变为数学入超国,经历了漫长而艰难的发展历程才渐渐汇入现代数学的潮流。由于教育上的失误,致使接受现代数学文明熏陶的我们,往往数典忘祖,对祖国的传统科学一无所知。数学史可以使学生了解中国古代数学的辉煌成就,了解中国近代数学落后的原因,中国现代数学研究的现状以及与发达国家数学的差距,以激发学生的爱国热情,振兴民族科学。 从普高教育上谈 数学史教学的教育功能 【摘要】 我国的数学教学一直注重形式化的演绎数学思维的训练,而忽视了培养学生对数学作为一门科学的思想体系,文化内涵和美学价值的认识《普通高中数学课程标准(实验)》增加的数学史内容,弥补了这方面的不足本文旨在探讨它的教育功能是如何体现的 【关键字】 数学史 数学观 教育功能 《普通高中数学课程标准(实验)》(以下简称《标准》)新意迭出,在教学内容上的亮点之一是增加了数学史方面的内容,提供了有关的11个专题,指出要通过数学史的学习使学生"体会数学对人类文明发展的作用,提高学习数学的兴趣,加深对数学的理解,感受数学家的严谨态度和锲而不舍的探索精神"过去我们一直认为数学属于理科,学的应该是如何解题这样的方法技巧,而数学史像是文科的内容,作为课外了解的扩充知识倒是可以,成为正式的教学内容似乎没有必要这种思想体现了我们一直以来对数学教育目的和内容的理解误区:只重视形式化的逻辑演绎能力的培养,而忽视了学习数学作为一门科学更内在的东西下面我们就数学史教学的教育功能作一下探讨 学习数学史可以帮助学生认识数学,形成正确的数学观 学习一门学科首先要弄清楚这是一门怎样的学科,《标准》明确提出要使学生"初步了解数学产生与发展的过程,体会数学对人类文明发展的作用",而现阶段高中学生对数学的看法大都停留在感性的层面上——枯燥,难学数学的本质特征是什么 当今数学究竟发展到了哪个阶段 在科学中的地位如何 与其它学科有什么联系 这些问题大都不被学生全面了解,而从数学史中可以找到这些问题的答案 日本数学家藤天宏教授在第九次国际数学教育大会报告中指出,人类历史上有四个数学高峰:第一个是古希腊的演绎数学时期,它代表了作为科学形态的数学的诞生,是人类"理性思维"的第一个重大胜利;第二个是牛顿-莱布尼兹的微积分时期,它为了满足工业革命的需要而产生,在力学,光学,工程技术领域获得巨大成功;第三个是希尔伯特为代表的形式主义公理化时期;第四个是以计算机技术为标志的新数学时期,我们现在就处在这个时期而数学历史上的三大危机分别是古希腊时期的不可公度量,17,18世纪微积分基础的争论和20世纪初的集合论悖论,它同前三个高峰有着惊人的密切联系,这种联系绝不是偶然,它是数学作为一门追求完美的科学的必然学生可以从这种联系中发现数学追求的是清晰,准确,严密,不允许有任何杂乱,不允许有任何含糊,这时候学生就很容易认识到数学的三大基本特征——抽象性,严谨性和广泛应用性了 同时,介绍必要的数学史知识可以使学生在平时的学习中对所学问题的背景产生更加深入的理解,认识到数学绝不是孤立的,它与其他很多学科都关系密切,甚至是很多学科的基础和生长点,对人类文明的发展起着巨大的作用从数学史上看,数学和天文学一直都关系密切,海王星的发现过程就是一个很好的例子;它与物理学也密不可分,牛顿,笛卡儿等人既是著名的数学家也是著名的物理学家在我们所处的新数学时期,数学(不仅仅是自然科学)逐步进入社会科学领域,发挥着意想不到的作用,可以说一切高技术的背后都有某种数学技术支持,数学技术已经成为知识经济时代的一个重要特征这些认识对于一个学习数学十余年的高中生来说是很有必要,也是必不可少的 二, 学习数学史有利于培养学生正确的数学思维方式 现行的数学教材一般都是经过了反复推敲的,语言十分精练简洁为了保持了知识的系统性,把教学内容按定义,定理,证明,推论,例题的顺序编排,缺乏自然的思维方式,对数学知识的内涵,以及相应知识的创造过程介绍也偏少虽利于学生接受知识,但很容易使学生产生数学知识就是先有定义,接着总结出性质,定理,然后用来解决问题的错误观点所以,在教学与学习的过程中存在着这样一个矛盾:一方面,教育者为了让学生能够更快更好的掌握数学知识,将知识系统化;另一方面,系统化的知识无法让学生了解到知识大都是经过问题,猜想,论证,检验,完善,一步一步成熟起来的影响了学生正确数学思维方式的形成 数学史的学习有利于缓解这个矛盾通过讲解一些有关的数学历史,让学生在学习系统的数学知识的同时,对数学知识的产生过程,有一个比较清晰的认识,从而培养学生正确的数学思维方式这样的例子很多,比如说微积分的产生:传统的欧式几何的演绎体系是产生不了微积分的,它是牛顿,莱布尼兹在古希腊的"穷竭法","求抛物线弓形面积"等思想的启发下为了满足第一次工业革命的需要创造得到的,产生的初期对"无穷小"的定义比较含糊,也不像我们现在看到的这样严密,在数学家们的不断补充,完善下,经过几十年才逐步成熟起来的 数学史的学习可以引导学生形成一种探索与研究的习惯,去发现和认识在一个问题从产生到解决的过程中,真正创造了些什么,哪些思想,方法代表着该内容相对于以往内容的实质性进步对这种创造过程的了解,可以使学生体会到一种活的,真正的数学思维过程,有利于学生对一些数学问题形成更深刻的认识,了解数学知识的现实来源和应用,而不是单纯地接受教师传授的知识,从而可以在这种不断学习,不断探索,不断研究的过程中逐步形成正确的数学思维方式 三,学习数学史有利于培养学生对数学的兴趣,激发学习数学的动机 动机是激励人,推动人去行动的一种力量,从心理学的观点讲,动机可分为两个部分;人的好奇心,求知欲,兴趣,爱好构成了有利于创造的内部动机;社会责任感构成了有利于创造的外部动机兴趣是最好的动机在日本中学生夺取国际IEA调查总分第一名的同时,却发现日本学生不喜欢数学的比例也是第一,这说明他们的好成绩是在社会,家长,学校的压力下获得的中国的情况如何呢 尚无全面的报道,但河南省新乡市四所中学的高中生学习数学情况的调查发现:"我不喜欢数学,但为了高考,我必须学好数学"的学生占被调查者的比例高达21%,而对数学"很感兴趣"的只有12%可见目前中学生的学习动机不明确,对数学的兴趣也很不够,这些都极大地影响了学习数学的效果但这并不是因为数学本身无趣,而是它被我们的教学所忽视了在数学教育中适当结合数学史有利于培养学生对数学的兴趣,克服动机因素的消极倾向 数学史中有很多能够培养学生学习兴趣的内容,主要有这几个方面:一是与数学有关的小游戏,例如巧拿火柴棒,幻方,商人过河问题等,它们有很强的可操作性,作为课堂活动或是课后研究都可以达到很好的效果二是一些历史上的数学名题,例如七桥问题,哥德巴赫猜想等,它们往往有生动的文化背景,也容易引起学生的兴趣还有一些著名数学家的生平,轶事,比如说一些年轻的数学家成材的故事,《标准》中提到的"从阿贝尔到伽罗瓦",阿贝尔22岁证明一般五次以上代数方程不存在求根公式,伽罗瓦创建群论的时候只有18岁还有法国数学家帕斯卡,16岁成为射影几何的奠基人之一,19岁发明原始计算器;德国数学家高斯19岁解决正多边形作图的判定问题,20岁证明代数基本定理,24岁出版影响整个19世纪数论发展,至今仍相当重要的《算术研究》;还有的是许多出生贫穷卑微的数学家通过自己的艰苦努力,最终在的数学研究上有骄人成绩的例子,如19世纪的大几何学家施泰纳出身农家自幼务农,直到14岁还没有学过写字,18岁才正式开始读书,后来靠做私人教师谋生,经过艰苦努力,终于在30岁时在数学上做出重要工作,一举成名如果在教学中加入这些学生感兴趣又有知识性的内容,消除学生对数学的恐惧感,增加数学的吸引力,数学学习也许就不再是被迫无奈的了 四,学习数学史为德育教育提供了舞台 在《标准》的要求下,德育教育已经不是像以前那样主要是政治,语文,历史这些学科的事了,数学史内容的加入使数学教育有更强大的德育教育功能,我们从下几个方面来探讨一下 首先,学习数学史可以对学生进行爱国主义教育现行的中学教材讲的大都是外国的数学成就,对我国在数学史上的贡献提得很少, 其实中国数学有着光辉的传统,有刘徽,祖冲之,祖暅,杨辉,秦九韶,李冶,朱世杰等一批优秀的数学家,有中国剩余定理,祖暅公理,"割圆术"等具有世界影响的数学成就,对其中很多问题的研究也比国外早很多年《标准》中"数学史选讲"专题3就是"中国古代数学瑰宝",提到《九章算术》,"孙子定理"这些有代表意义的中国古代数学成就 然而,现阶段爱国主义教育又不能只停留在感叹我国古代数学的辉煌上从明代以后中国数学逐渐落后于西方,20世纪初,中国数学家踏上了学习并赶超西方先进数学的艰巨历程《标准》中"数学史选讲"专题11—— "中国现代数学的发展"也提到要介绍"现代中国数学家奋发拼搏,赶超世界数学先进水平的光辉历程"在新时代的要求下,除了增强学生的民族自豪感之外,还应该培养学生的"国际意识",让学生认识到爱国主义不是体现在"以己之长,说人之短"上,在科学发现上全人类应该相互学习,互相借鉴,共同提高,我们要尊重外国的数学成就,虚心的学习,"洋为中用" 其次,学习数学史可以引导学生学习数学家的优秀品质任何一门科学的前进和发展的道路都不是平坦的,无理数的发现,非欧几何的创立,微积分的发现等等这些例子都说明了这一点数学家们或是坚持真理,不畏权威,或是坚持不懈,努力追求,很多人甚至付出毕生的努力阿基米德在敌人破城而入危及生命的关头仍沉浸在数学研究之中,为的是"我不能留给后人一条没有证完的定理"欧拉31岁右眼失明,晚年视力极差最终双目失明,但他仍以坚强的毅力继续研究,他的论文多而且长,以致在他去世之后的10年内,他的论文仍在科学院的院刊上持续发表对那些在平时学习中遇到稍微繁琐的计算和稍微复杂的证明就打退堂鼓的学生来说,介绍这样一些大数学家在遭遇挫折时又是如何执著追求的故事,对于他们正确看待学习过程中遇到的困难,树立学习数学的信心会产生重要的作用 最后,学习数学史可以提高学生的美学修养数学是美的,无数数学家都为这种数学的美所折服能欣赏美的事物是人的一个基本素质,数学史的学习可以引导学生领悟数学美很多著名的数学定理,原理都闪现着美学的光辉例如毕达哥拉斯定理(勾股定理)是初等数学中大家都十分熟悉的一个非常简洁而深刻的定理,有着极为广泛的应用两千多年来,它激起了无数人对数学的兴趣,意大利著名画家达芬奇,印度国王Bhaskara,美国第20任总统Carfield等都给出过它的证明1940年,美国数学家卢米斯在所著《毕达哥拉斯命题艺术》的第二版中收集了它的370种证明,充分展现了这个定理的无穷魅力黄金分割同样十分优美和充满魅力,早在公元前6世纪它就为毕达哥拉斯学派所研究,近代以来人们又惊讶地发现,它与著名的斐波那契数列有着十分密切的内在联系同时,在感叹和欣赏几何图形的对称美,尺规作图的简单美,体积三角公式的统一美,非欧几何的奇异美等时,可以形成对数学良好的情感体验,数学素养和审美素质也得到了提高,这是德育教育一个新的突破口
根据你的选题来决定形式,同时研究的目的、意义也就是为什么要研究、研究它有什么价值。这一般可以先从现实需要方面去论述,指出现实当中存在这个问题,需要去研究,去解决,本论文的研究有什么实际作用,然后,再写论文的理论和学术价值。这些都要写得具体一点,有针对性一点,不能漫无边际地空喊口号。对于创作上的问题可以来职称驿站网看看。