期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    5

  • 浏览数

    149

zingea
首页 > 期刊问答网 > 期刊问答 > 物理论文高三必修一选修二

5个回答 默认排序1
  • 默认排序
  • 按时间排序

yongrushui

已采纳
麦克斯韦是19世纪伟大的英国物理学家、数学家。1831年11月13日生于苏格兰的爱丁堡,自幼聪颖,父亲是个知识渊博的律师,使麦克斯韦从小受到良好的教育。10岁时进入爱丁堡中学学习14岁就在爱丁堡皇家学会会刊上发表了一篇关于二次曲线作图问题的论文,已显露出出众的才华。1847年进入爱丁堡大学学习数学和物理。1850年转入剑桥大学三一学院数学系学习,1854年以第二名的成绩获史密斯奖学金,毕业留校任职两年。1856年在苏格兰阿伯丁的马里沙耳任自然哲学教授。1860年到伦敦国王学院任自然哲学和天文学教授。1861年选为伦敦皇家学会会员。1865年春辞去教职回到家乡系统地总结他的关于电磁学的研究成果,完成了电磁场理论的经典巨著《论电和磁》,并于1873年出版,1871年受聘为剑桥大学新设立的卡文迪什试验物理学教授,负责筹建著名的卡文迪什实验室,1874年建成后担任这个实验室的第一任主任,直到1879年11月5日在剑桥逝世。麦克斯韦主要从事电磁理论、分子物理学、统计物理学、光学、力学、弹性理论方面的研究。尤其是他建立的电磁场理论,将电学、磁学、光学统一起来,是19世纪物理学发展的最光辉的成果,是科学史上最伟大的综合之一。麦克斯韦大约于1855年开始研究电磁学,在潜心研究了法拉第关于电磁学方面的新理论和思想之后,坚信法拉第的新理论包含着真理。于是他抱着给法拉第的理论“提供数学方法基础”的愿望,决心把法拉第的天才思想以清晰准确的数学形式表示出来。他在前人成就的基础上,对整个电磁现象作了系统、全面的研究,凭借他高深的数学造诣和丰富的想象力接连发表了电磁场理论的三篇论文:《论法拉第的力线》(1855年12月至1856年2月);《论物理的力线》(1861至1862年);《电磁场的动力学理论》(1864年12月8日)。对前人和他自己的工作进行了综合概括,将电磁场理论用简洁、对称、完美数学形式表示出来,经后人整理和改写,成为经典电动力学主要基础的麦克斯韦方程组。据此,1865年他预言了电磁波的存在,电磁波只可能是横波,并计算了电磁波的传播速度等于光速,同时得出结论:光是电磁波的一种形式,揭示了光现象和电磁现象之间的联系。1888年德国物理学家赫兹用实验验证了电磁波的存在。麦克斯韦于1873年出版了科学名著《电磁理论》。系统、全面、完美地阐述了电磁场理论。这一理论成为经典物理学的重要支柱之一。在热力学与统计物理学方面麦克斯韦也作出了重要贡献,他是气体动理论的创始人之一。1859年他首次用统计规律得出麦克斯韦速度分布律,从而找到了由微观两求统计平均值的更确切的途径。1866年他给出了分子按速度的分布函数的新推导方法,这种方法是以分析正向和反向碰撞为基础的。他引入了驰豫时间的概念,发展了一般形式的输运理论,并把它应用于扩散、热传导和气体内摩擦过程。1867年引入了“统计力学”这个术语。麦克斯韦是运用数学工具分析物理问题和精确地表述科学思想的大师,他非常重视实验,由他负责建立起来的卡文迪什实验室,在他和以后几位主任的领导下,发展成为举世闻名的学术中心之一。他善于从实验出发,经过敏锐的观察思考,应用娴熟的数学技巧,从缜密的分析和推理,大胆地提出有实验基础的假设,建立新的理论,再使理论及其预言的结论接受实验检验,逐渐完善,形成系统、完整的理论。特别是汤姆孙W卓有成效地运用类比的方法使麦克斯韦深受启示,使他成为建立各种模型来类比研究不同物理现象的能手。在他的电磁场理论的三篇论文中多次使用了类比研究方法,寻找到了不同现象之间的联系,从而逐步揭示了科学真理。麦克斯韦严谨的科学态度和科学研究方法是人类极其宝贵的精神财富。麦克斯韦父亲的影响在科学史上,一些重大的理论,常常要靠许多人的前赴后继、不辞劳苦的努力,才能创立起来。19世纪,导致物理学爆发一场革命的电磁理论的创立,就是这样的。从奥斯特、安培发现电流的磁效应开始,经过法拉第的奠基,到理论的完成,前后经历了半个多世纪。最后完成这个理论的人,是英国杰出的数学家物理学家詹姆斯·克拉克·麦克斯韦。麦克斯韦比法拉第小40岁。1831年11月13日,他生在苏格兰古都爱丁堡,跟电话发明家贝尔(1847~1922)是同乡。法拉第发现电磁感应恰好也在1831年。这一年就成了电学史上值得纪念的一年。麦克斯韦的父亲约翰·克拉克·麦克斯韦,是个热衷于技术和建筑设计的律师,对麦克斯韦的一生影响很大。约翰·克拉克·麦克斯韦思想开通,讲究实际,非常能干。家里的大小事情,从修缮房屋、剪裁衣服到制作玩具,他样样都会做。他在爱丁堡附近的乡下有座庄园,麦克斯韦的童年就是在这座庄园里度过的。这个孩子从小喜欢思考问题,很受父母宠爱。小家伙跟着父母出去玩,一张小嘴总要不停地提出各种各样的问题。沿途所见,从路边的桑树、脚下的石块,直到行人的穿着表情,都成了他发问的内容。有些幼稚可笑的问题,常常把过路人也逗乐了。一次他们看见路旁停着一辆空马车,两岁的麦克斯韦突然问父亲:“爸爸,你看那辆马车为什么不走呢?”父亲信口回答:“它在休息。”“它为什么要休息呢?”“大约累了吧,”父亲敷衍说。“不,”儿子纠正说,“它是肚子痛!”“不是肚子痛,是累了。”“不是累了,是肚子痛!”儿子一口咬定。父亲忍不住笑了起来。后来,麦克斯韦稍大一点,提的问题更有意思了,比如“树木为什么向天上长”呀,“蚂蚁会不会说话”呀。有一天,麦克斯韦的姨妈给他带来一篮苹果。小家伙缠住她问:“苹果为什么是红的?”姨妈被这个突然的问题难住了,一时不知道怎样回答才好。为了摆脱窘境,她就叫麦克斯韦去吹肥皂泡玩,谁知道个主意更糟了。肥皂泡在阳光下呈现出美丽的五颜六色,使得麦克斯韦又惊又喜,向她提出了的关于颜色的问题。父亲见儿子对自然感兴趣,非常高兴,后来就带他去听爱丁堡皇家学会的科学讲座,当时他的个头还没有讲台高呢!约翰·克拉克·麦克斯韦本人是皇家学会的活跃分子,儿子跟随他经常出入科学界,受到不少熏陶。麦克斯韦童年的欢乐是短暂的。他八岁那年,母亲患肺结核不幸去世。这种病在今天是不难治好的,但是在一个世纪以前的当时,却是不治之症。因为那时没有特效药,一个人得了肺病,就等于判了死刑。和麦克斯韦同时代的英国女作家夏洛蒂·勃朗特(《简·爱》作者)三姊妹,贝尔的两个兄弟,都是因为患肺病夭折的。母亲去世以后,麦克斯韦的父亲挑起了哺养、教育儿子的全部担子。他既是父亲,又兼做母亲,操了不少心。幼年丧母本来是不幸的,麦克斯韦失去母爱,性情渐渐变得孤僻、内向。他最大的快乐,是形影不离地跟着父亲走,给父亲当个小小的帮手。父子两人朝夕相处,相依为命,关系非常亲密。麦克斯韦10岁那年,进了爱丁堡中学。中学的生活充满了喧闹和戏剧性。他是在学期中间插班的,第一天上课就受到全班的嘲笑。几个调皮学生看到这个新来的同伴怯生、腼腆,直向他扮鬼脸。由于麦克斯韦童年一直在父亲乡下的庄园里生活,讲话有很重的乡土音。当老师点名叫他回答问题的时候,他刚一开口就引起哄堂大笑。有一次,大约因为发音太怪,连一位文质彬彬的女教帅都忍不住笑出泪来。从此老师就很少提问他了。更糟的是,他的衣服全是父亲做的,与众不同。19世纪英国的服装很讲究。妇女把华丽当做时髦。男人却讲究戴高筒礼帽,不论老少,脖子上还要围一条紧绷绷的硬领。麦克斯韦的父亲认为这不但系起来不方便,而且也不卫生。他不顾习俗,给儿子来了个小小的服装改革。这个多才多艺的律师亲自设计、亲手剪裁,替麦克斯韦做了一套简便的紧身服,可以不用穿外套,并且甩掉硬领的累赘。麦克斯韦的皮鞋也是父亲做的,大约是为了缝合的方便,皮鞋头是方的,鞋帮上还有金属纽扣。没料到,这些“奇装异服”却给麦克斯韦招来了许多屈辱。他在班上成了一只名副其实的“丑小鸭”,处处被排挤,受讥笑。每次放学回家,他不是紧身服被人扯破,就是腰带不翼而飞。父亲看到这种情景,痛惜地摇摇头,决定取消这不走运的“服装改革”,儿子尽管眼泪汪汪,却顽强地要坚持穿到底,因为他相信父亲的设计是无可非议的,他不愿向暴力屈服。数学才华麦克斯韦照样穿着父亲做的衣服进出课堂。他为了保持服装的整洁,常常要用拳头自卫。同学们发现这个新生并不是可以随便欺侮的,就有意孤立他。麦克斯韦本来就怕羞,现在更不愿意和大家往来了。在班里,面对着同学们的热嘲冷讽,他沉默着,但是却从来没有低过头。在忍无可忍的时候,他就用尖刻、辛辣的话来进行回击。下课以后,他总爱独自坐在树下读歌谣,画一些只有他自己才看得懂的图画。要不,他就一个人躲在教室的角落里,专心致志地演算父亲给他出的数学题。同班同学都不理解他,老师也认为他是个古怪的孩子。大家暗中给他取了个外号,叫他“瓜娃”。整个爱丁堡中学,只有低年级的两个学生跟他很友好。那两个学生在班上大约也是受气的,可以说是同病相怜。就这样,麦克斯韦在冷眼中度过了中学的最初时光。谁也没有想到,到了中年级的时候,出现了奇迹。一次学校里举行数学和诗歌比赛,评选揭晓的时候,爆了个大冷门:两个科目的一等奖都由同一个人获得。这个出类拔萃的少年不是别人,而是一向不被人看在眼里的麦克斯韦!这不但使全班同学惊奇得睁大了眼睛,连级任老师也感到意外。他们这才发现,这只灰色的“丑小鸭”原来是一只白天鹅。这次比赛改变了麦克斯韦在班里的地位。优等生总是受崇拜的,再也没有谁取笑他的服装和说话的声音了,同学们开始尊敬他,向他请教疑难问题。麦克斯韦成为全校拔尖的学生,获得了许多奖励。他的光彩,看起来有些像彗星那样突然出现,实际上却是刻苦学习的结果。麦克斯韦对数学、物理学有浓厚的兴趣,尤其喜欢数学。他的数学天赋,最早是父亲在无意中发现的。在麦克斯韦还只有几岁的时候,有一天,父亲叫他画插满金菊的花瓶。麦克斯韦画完交卷的时候,父亲拿过他的画,边看边笑了起来。因为满纸涂的都是几何图形:花瓶是梯形,菊花成了大大小小一簇圆圈,还有一些奇奇怪怪的三角,大概是表示叶子的。从这以后,父亲就开始教他几何学,过后又教他代数。于是,他和数学结下了不解之缘。后来,他在数学竞赛中夺得了冠军,决不是偶然的。麦克斯韦的数学才华,使他很快突破了课本的界限。他还没满15岁,就写了一篇数学论文,发表在《爱丁堡皇家学会学报》上。一个最高学术机构的学报刊登孩子的论文,是罕见的,麦克斯韦的父亲为这件事感到自豪。论文的题目,是讨论二次曲线的几何作图。据说这个问题,当时只有大数学家笛卡尔(1596~1650)曾经研究过。麦克斯韦的方法同笛卡尔的方法不但不雷同,而且还要简便些。当审定论文的教授确证了这一点的时候,都感到非常吃惊。1846年4月,这篇论文在皇家学会上宣读。通常宣读论文的都是作者本人,这一次却不是。因为考虑到麦克斯韦实在太年轻了,论文是由一位教授代读的。麦克斯韦不但是个少年科学家,而且还是个小诗人。有趣的是,历史上不少著名的科学家都能做诗。罗蒙诺索夫常常把写诗当做消遣,他的颂歌很受叶卡德琳娜女皇青睐。因为这个缘故,罗蒙诺索夫几次幸免于政治迫害。化学大师戴维也是一位诗歌高手,只是因为他在科学方面的成就非常大,他的诗歌创作的光华才被掩盖了。麦克斯韦的诗歌,成就虽然不及罗蒙诺索夫,却也自成一格。他的诗常被同学传抄、朗诵。麦克斯韦一生都没有放弃过写诗的爱好,不过,他却从来没有想过要当一个诗人。他的诗多半是即兴的作品,他常常在亲友们欢聚的时候给他们朗读自己的诗。诗的内容,有不少是科学题材。麦克斯韦在中学时代,还喜欢玩陀螺。它类似我国儿童玩的那种陀螺,玩的时候用绳子不断地抽打,陀螺就不停地在地上旋转。据说他一生都爱玩陀螺,还教他的许多朋友玩过。另外,对一种叫做活动画筒的玩具,他也有强烈的兴趣。麦克斯韦的这两种爱好,不单纯是为了娱乐,主要还是为了探索科学的道理。这两种玩具的原理,后来都被他应用到科学上去了。1847年秋天,16岁的麦克斯韦中学毕业以后,考进了苏格兰最高学府爱丁堡大学,专门攻读数学和物理学。他是班上年纪最小的学生,坐位在最前排,站队总是在最后,书包里揣着陀螺和诗集。这个前额饱满、两眼炯炯有神的小伙子,很快就引起了全班的注意。他不但考试名列前茅,而且经常对老师的讲课提出问题。有一次,他指出一位讲师讲的公式有错误。那个讲师起初不相信,回答说:“如果你的对了,我就把它称做麦氏公式!”讲师晚上回家一验算,果然是自己讲错了。到大学二年级的时候,麦克斯韦掌握的知识已相当广泛了。除了学习必修的功课,他还开始自己搞研究,选题范围涉及光学、电化学和分子物理学三个领域。这对锻炼他独立思考的能力起了很好的作用。不久,他在《爱丁堡皇家学会学报》上又发表了两篇论文。一位赏识他的物理教授,还特许他单独在实验室做实验。爱丁堡大学给麦克斯韦留下了良好的回忆。在这里,他获得了登上科学舞台所必需的基本训练。但是,三年以后,对麦克斯韦说来,这个摇篮显得狭小了。为了进一步深造,1850年他在征得父亲的同意以后,离开了爱丁堡。转到人才辈出的剑桥大学学习。利器在手剑桥大学创立在1209年,是英国首屈一指的高等学府,有优良的科学传统。牛顿曾经在这里工作过30多年,达尔文(1809~1882)也是在这里毕业的。19岁的麦克斯韦初到剑桥大学,一切都觉得新鲜,他几乎每天都和父亲通信,报告自己的见闻、感想和学习收获。第二年,他由于考试成绩优异,获得了奖学金。当时,大学生大多数都是自费,获得奖学金的总是最勤奋的学生。按照规定,获得奖学金的学生都在一起吃饭,因此,麦克斯韦结识了一群有为的年轻人,他逐渐克服了少年时代的孤僻,活跃起来。不久,他被吸收加入了一个叫做“使徒社”的学术团体。这个团体又叫做“精选论文俱乐部”,专门评选学生中最优秀的论文。有意思是,“使徒社”的名称是根据《圣经》取的。因为耶稣只有12个门徒,“使徒社”也只能由12个成员组成,所以整个剑桥大学每届只能有12个学生属于这个团体。这个团体实际上是一个小小的“皇家学会”,必须是最出类拔萃的学生才有资格参加。这个时期,麦克斯韦专攻数学,读了大量的专著。他的学习方法,不像法拉第那样循序渐进,井井有条。他读书不大讲究系统性,有时为了钻研一个问题,他可以接连几周其他什么都不管;而另一个时候,他又可能碰到什么就读什么,漫无边际,像一个性急的猎手,在数学领域里纵马驰骋。课后,“使徒社”的成员们常在一起讨论各种问题。他们很欣赏麦克斯韦即兴创作的诗,但是要和他对话却很困难,因为麦克斯韦说起话来,和他读书一样,常常是天马行空,前言不搭后语,一个题目还没有讲完,他跳到另一个题目上去了。他的思路过于敏捷,让人难以捉摸。再加上他还保持着小时候的习惯,喜欢突然提一此奇怪的问题,比如“死甲虫为什么不导电呢?”“活猫和活狗摩擦可以生电吗?”就更使人反应不过来了。有一次,一位朋友同他到郊外散步。整个傍晚,大约都在讨论对某道难题的解法,麦克斯韦不停地说着,对方生怕不能领会,听得很仔细,但是最后还是一句都没有听懂。麦克斯韦这种机枪式讲授法,给他后来当教授带来不少困难。他一生都不被人理解。中学时候他的服装不被同学理解;大学时候他的语言不被人理解;到后来,他的学说也是很长时间不被人理解。尽管“话不投机”,社友们还是把他看做他们中间独一无二的人。麦克斯韦惊人的想象、闪电般的思维能力、讥诮的诗句,把他们征服了。这是一个奇才,需要名师指点,才能放出异彩。幸运的是,有个偶然的机会,麦克斯韦果然遇上了伯乐,那就是剑桥大学的教授、著名数学家霍普金斯。一天,霍普金斯到图书馆借书,他要的一本数学专著恰被人先借去了。一般学生是不可能读懂那本书的,教授有些诧异,向管理员询问借书人的名字,管理员回答说:“麦克斯韦”。数学家找到麦克斯韦,看见年轻人正埋头作摘抄,笔记上涂得乱七八糟,毫无秩序。霍普金斯不由得对这个青年发生了兴趣,诙谐地说:“小伙子,如果没有秩序,你永远成不了优秀的数学物理学家!”霍普金斯所说的数学物理学家,是指善于运用数学方法解决理论问题的物理学家,通常也称做理论物理学家,需要在数学和物理学上都有很高的造诣。从这以后,麦克斯韦成了霍普金斯的研究生。霍普金斯学问渊博,培养出了不少人才。有多方面成就的威廉·汤姆生(就是著名的开尔文勋爵)和数学家斯托克斯(1819~1903),都是他的门下。麦克斯韦在导师的指导下,首先克服了杂乱无章的学习方法。霍普金斯对他的每一个选题,每一步运算都要求得很严格。那时,麦克斯韦还参加了剑桥大学的斯托克斯讲座。斯托克斯比他大12岁,在数学和流体力学上都有建树,他在数学上的重要发现在科学史上曾经有记载。经过两位优秀数学家的指教,麦克斯韦进步很快,不出三年就掌握了当时所有先进的数学方法,成了有为的青年数学家。霍普金斯对他的评价是:“在我教过的全部学生中,毫无疑问,这是最杰出的一个!”尤其重要的是,麦克斯韦不是一个抽象的数学家。这一点也要归功于他的老师。历来的数学家有两派,一派以古希腊的毕达哥拉斯(约前580~约前500)为鼻祖,认为世界的本原就是抽象的数,数学决定一切;另一派以17世纪的笛卡尔为代表,他指出数学是客观事物的定量反映,也是一种知识工具。这位解析几何的创始人,曾经针对那些纯粹的数学家说:“没有什么比埋头到空洞的数学和抽象的图形中更无聊的了。”这两种对立的态度,导致人们对数学持有两种不同的看法。一种把数学看成纯粹的符号,为数学而数学;另一种却把生动的物理学概念同数学结合起来了,把数学当成研究物理学的手段。霍普金斯和斯托克斯都属于笛卡尔派。麦克斯韦受到他们的直接影响,很重视数学的作用。他一开始就把数学和物理学结合起来。这一点对他以后完成电磁理论,是重要的。1854年,23岁的麦克斯韦参加了数学学位考试。主考人是斯托克斯,题目涉及曲面积分和线积分,难度很大。事后大家才知道,那是斯托克斯刚发现的一个定理。这个定理后来对麦克斯韦的电学研究大有帮助。考试结果,麦克斯韦获得了甲等数学优等生第二名。也就是这一年,他对电磁学产生了浓厚的兴趣。法国浪漫主义作家乔治·桑(1804~1876)说过:“在抽剑向敌以前,必须练好剑术。”麦克斯韦现在掌握了过硬的数学本领,他是利器在手,只等冲锋了。继续着法拉第的事业麦克斯韦毕业以后留在学校工作。起初,他研究的课题是光学里的色彩论。不久他读到了法拉第的《电学实验研究》,马上被书中新颖的实验和见解吸引住了。当时学术界对法拉第的学说看法不一致,有不少非议。主要原因是“超距作用”的传统观念影响还很深,旧的大厦动摇了,但是并没有倒塌;同时,也因为法拉第的学说在理论上还不够严谨。作为实验大师,法拉第有许多过人的地方,唯独数学功夫不够,他的创见都是用直观形式表达的。一般的理论物理学家都不承认法拉第的学说,认为它不过是一些实验记录。有个天文学家就公开宣称:“谁要是在精确的超距作用和模糊不清的力线观念之间有所迟疑,谁就是对牛顿的亵渎!”在剑桥大学,学者们也有分歧意见。其中最有见识的,要算威廉·汤姆生了。这位青年教授对电学很有研究,曾经多次向法拉第请教。在麦克斯韦毕业前一年,汤姆生发表了一篇题目是《瞬变电流》的论文,指出莱顿瓶的放电有振荡性质。麦克斯韦见到论文十分佩服,他特地写信给汤姆生,请求他告诉一些研究电学的门路。汤姆生比麦克斯韦大七岁,他后来没有能够把电磁研究坚持到底。但是,他对麦克斯韦却有不少帮助。麦克斯韦在给父亲的信里曾经高兴地谈到,汤姆生很乐意指教他。麦克斯韦受这位先行者的启示,相信法拉第的学说中包含着真理。他在认真研究了法拉第的著作以后,省悟出力线思想的宝贵价值,也看到了法拉第定性表述的弱点。这个初出茅庐的青年科学家决心用数学来弥补这一点。一年以后,24岁的麦克斯韦麦表《论法拉第的力线》,这是他第一篇关于电磁学的论文。在论文中,麦克斯韦通过数学方法,把电流周围存在力线这个现象,概括做一个高等数学里的矢量微分方程。根据这个方程,每一股电流都产生一条环状磁力线。这一年(1855),恰好法拉第结束了长达30多年的电学研究,他在科学笔记里写下了最后一个编号:5430。正是“芳林新叶催陈叶,流水前波让后波”,麦克斯韦接过了这位伟大先驱者的火炬,开始向电磁领域的纵深挺进。《论法拉第的力线》这篇论文,虽然基本上是对法拉第力线概念的数学“翻译”,却是十分重要的一步。因为麦克斯韦一开始就使用了数学方法,而且选定了法拉第学说的精髓——力线思想,当做自己研究的起点。这表明麦克斯韦的科学洞察力确实是不同来凡响的。他认准了主攻方向,就坚定不移地研究下去。他后来的一系列论文,步步深入,都是沿着这条正确道路走的。这一点,是他比汤姆生高明的地方。汤姆生已经走到真理的边缘,却迟疑不前;麦克斯韦抓住了真理,就锲而不舍。所以麦克斯韦尽管起步比较迟,却第一个登上了光辉的顶峰。科学的道路总是不平坦的。正当麦克斯韦的研究很有希望的时候,一桩不幸的事情打断了他的计划。一天,他正在埋头研究几篇新近的电学资料,邮递员送来一封家信。他拿到信,一眼看出不是父亲的笔迹,心头不由一惊。他许久以来担心的事情终于发生了。父亲年老体弱,健康恶化,突然病倒在床。那封信是父亲请别人代写的。麦克斯韦读完信,心里十分焦虑和难过。他对父亲的感情是非常深的。从幼年起,父亲就是他的良师益友,也是整个家庭的支柱。十几年来,他们朝夕相处,十分融洽。麦克斯韦离家求学以后,他们几乎每天通信,交换各种科学思想和对社会的见解,也畅谈有趣的日常生活。为了照顾父亲,麦克斯韦只得离开剑桥大学,到离家比较近的阿伯丁工作。阿伯丁是英国北部的一个海港,那里的一所学院答应让麦克斯韦担任自然哲学讲师,可是需要等一段时间。麦克斯韦整夜守在父亲床前,尽力减轻老人的病痛。但是不论他怎样小心伺候,还是没有挡住死神的降临。1856年春天快要到来的时候,父亲终于离开了人间。这在麦克斯韦生活中,无疑是不可弥补的损失。他悲痛的心情久久不能平息。不久,阿伯丁的马锐斯凯尔学院正式聘请他当自然哲学教授。麦克斯韦在就职以前,回到剑桥大学一些事务,停留了好几个月。他当时的心情很矛盾。对于母校,他是留恋的,而且父亲已经去世,他留在阿伯丁的意义也不大了,更主要的是他的电磁研究刚刚开始,他不知道在阿伯丁有没有合适的研究条件。但是,马锐斯凯尔学院已经给他下了聘书,据说院长很赏识他,他不好推脱,只得上任了。这一去,他的电磁研究竟推迟了四年。法拉第的启发1860年初夏,马锐斯凯尔学院的物理学讲座由于某种原因停了。28的麦克斯韦离开阿伯丁港,到伦敦皇家学院去任教。他的妻子也随同前往。这次工作调动,是麦克斯韦一生事业的转折点。在这以前,还有一段小小的插曲。麦克斯韦最初的母校爱丁堡大学,也要聘请一个自然哲学教授。他开始是准备去那里的。应选的一共有三个人,另外两个是他在剑桥大学的同学,其中一个还是中学的同学。三个人里究竟应该取谁,当局决定通过考试来决定。要是论学问,麦克斯韦稳拿第一,但是比口才,他吃亏了。考试结果,麦克斯韦名列最后,连主考人对他的讲课能力都表示怀疑。当时一家爱丁堡杂志评论这件事,也很替他惋惜。俗话说:“塞翁失马,安知非福”,麦克斯韦没有被爱丁堡大学选中,自然是件憾事,但是他却因为这个转到了皇家学院,完成了一生中最重要的贡献。麦克斯韦在阿伯丁的四年时间里,一直怀着一桩心事,就是想用数学工具表达法拉第的学说。他的这个愿望,1855年只开了个头就搁下了。就是在研究土星的苦战中,只要见到有关电磁学方面的文章,也都会引起他密切的关注。他经常给法拉第写信,探索电磁的奥秘。他的案头一直摆着《电学实验研究》。每次打开这部辉煌的巨著,他的情绪就十分激动。法拉第,这位他当时还没有见过的伟人,给物理学描绘了一幅多么形象的图画啊!电、磁、光、力线、波动……在它们背后隐藏着什么规律呢?麦克斯韦到伦敦以后特地拜访法拉第。这是一次难忘的会晤。青年物理学家递上名片,不一会儿,法拉第面带微笑地走了出来。这位实验大师已经年近七旬,两鬓斑白。他同麦克斯韦一见如故,亲切地交谈起来。这两位伟人,他们不但在年龄上相差40岁,而且在性格、爱好、特长等方面也迥然不同,可是他们对物质世界的看法却产生了共鸣。这真是奇妙的结合:法拉第快活、和蔼,麦克斯韦严肃、机智。老师是一团温暖的火,学生像一把锋利的剑。麦克斯韦不善于辞令,法拉第演讲起来却是娓娓动听。一个不精通数学,另一个却对数学运用自如。两个人的科学方法也恰好相反:法拉第主要是实验探索,麦克斯韦擅长理论

物理论文高三必修一选修二

178 评论(11)

被风吹乱的云

必修一,高一上必修二,高一下选修一系列,强调物理与社会、人文,文科高二上下(选修)选修二系列,强调物理与科学技术,文科高三上下(选修)选修三系列,全面学习物理各方面,理科高二高三依次学习1~5
204 评论(14)

hekeqiang87

I必考部分:(必修1、必修2、选修3-1、3-2)  一、力学:  1.1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快。并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的)。  2.1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验。  3.1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即  牛顿三大运动定律)。  4.17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去。得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。  5.英国物理学家胡克对物理学的贡献:胡克定律 。经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)  6.1638年,伽利略在《两种新科学的对话》一书中,运用观察 ——假设——数学推理的方法,详细研究了抛体运动。  7.人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表。而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。  8.17世纪,德国天文学家开普勒提出开普勒三大定律。  9.牛顿于 1687年正式发表万有引力定律 。1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量。  10.1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星。1930年,美国天文学家汤苞用同样的计算方法发现冥王星。  11.我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同。但现代火箭结构复杂,其所能达到的最大速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比)。俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。多级火箭一般都是三级火箭,我国已成为掌握载人航天技术的第三个国家。  12.1957年10月,苏联发射第一颗人造地球卫星。1961年4月,世界第一艘载人宇宙飞船 “东方1号”带着尤里加加林第一次踏入太空。  13.20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。  二、电磁学:  13.1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律 --库仑定律,并测出了静电力常量k的值。  14.1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。  15.1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。  16.1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。  17.1826年德国物理学家欧姆(1787~1854)通过实验得出欧姆定律。  18.1911年,荷兰科学家昂尼斯(或昂纳斯)发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象--超导现象。  19.19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳--楞次定律。  20.1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。  21.法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,同时提出了安培分子电流假说。并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。  22.荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛伦兹  力)的观点。  23.英国物理学家汤姆孙发现电子,并指出:阴极射线是高速运动的电子流。  24.汤姆孙的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。  25.1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒  子。最大动能仅取决于磁场和D形盒直径。带电粒子圆周运动周期与高频电源的周期相同 。  但当粒子动能很大,速率接近光速时,根据狭义相对论,粒子质量随速率显著增大,粒子在磁场中的回旋周期发生变化,进一步提高粒子的速率很困难。  26.1831年,英国物理学家法拉第发现了由磁场产生电流的条件和规律 ——电磁感应定律。  27.1834年,俄国物理学家楞次发表确定感应电流方向的定律--楞次定律。  28.1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一,双绕线法制精密电阻为消除其影响应用之一。Ⅱ.选考部分:(选修3-3、3-4、3-5)  三、热学(3-3选考):  29.1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象--布朗运动。  30.19世纪中叶,由德国医生迈尔 。英国物理学家焦尔。德国学者亥姆霍兹最后确定能量守恒定律。  31.1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。  32.1848年,开尔文提出热力学温标,指出绝对零度( -15℃)是温度的下限。热力学温标与摄氏温度转换关系为T=t+15 K。  热力学第三定律:热力学零度不可达到。  四、波动学、光学、相对论(3-4选考):  33.17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。  34.1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律--惠更斯原理。  35.奥地利物理学家多普勒(1803~1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象--多普勒效应(相互接近,f增大。相互远离,f减少)。  36.1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。电磁波是一种横波。  37.1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。  38.1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。  39.1800年,英国物理学家赫歇耳发现红外线。  1801年,德国物理学家里特发现紫外线。  1895年,德国物理学家伦琴发现x射线(伦琴射线),并为他夫人的手拍下世界上第一张x射线的人体照片。  40.1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律--折射定律。  41.1801年,英国物理学家托马斯·杨成功地观察到了光的干涉现象。  42.1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射--泊松亮斑。  43.1864年,英国物理学家麦克斯韦预言了电磁波的存在,并指出光是一种电磁波。  1887年,赫兹用实验证实了电磁波的存在,光是一种电磁波。  44.1905年,爱因斯坦提出了狭义相对论,有两条基本原理:①相对性原理--不同的惯性参考系中,一切物理规律都是相同的。②光速不变原理--不同的惯性参考系中,光在真空中的速度一定是c不变。  45.爱因斯坦还提出了相对论中的一个重要结论——质能方程式E=mc2。  46.公元前 468~前376,我国的墨翟及其弟子在《墨经》中记载了光的直线传播。影的形成。光的反射。平面镜和球面镜成像等现象,为世界上最早的光学著作。  47.1849年法国物理学家斐索首先在地面上测出了光速,以后又有许多科学家采用了更精密的方法测定光速,如美国物理学家迈克尔逊的旋转棱镜法。(注意其测量方法)  48.关于光的本质:17世纪明确地形成了两种学说:一种是牛顿主张的微粒说,认为光是光源发出的一种物质微粒。另一种是荷兰物理学家惠更斯提出的波动说,认为光是在空间传播的某种波。这两种学说都不能解释当时观察到的全部光现象。  49.物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验一相对论(高速运动世界);②热辐射实验一一量子论(微观世界)。  50.19世纪和20世纪之交,物理学的三大发现:x射线的发现,电子的发现,放射性 同  位素的发现。  51.1905年,爱因斯坦提出了狭义相对论,有两条基本原理:①相对性原理--不同的惯性参考系中,一切物理规律都是相同的。②光速不变原理--不同的惯性参考系中,光在真空中的速度一定是c不变。  52.1900年,德国物理学家普朗克解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的,而是一份一份的,每一份就是一个最小的能量单位,即能量子。  53.激光--被誉为20世纪的“世纪之光”。  五、动量、波粒二象性、原子物理(3-5选考):  54.1900年,德国物理学家普朗克为解释物体热辐射规律提出:电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界。受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。  55.1922年,美国物理学家康普顿在研究石墨中的电子对x射线的散射时--康普顿效应,证实了光的粒子性(说明动量守恒定律和能量守恒定律同时适用于微观粒子)。  56.1913年,丹麦物理学家玻尔提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。  57.1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性。  58.1927年美。英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。  59.1858年,德国科学家普里克发现了一种奇妙的射线--阴极射线(高速运动的电子流)。  60.1906年,英国物理学家汤姆生发现电子,获得诺贝尔物理学奖。  61.1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。  62.1897年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型。  63.1909~1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10m~15m。1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。预言原子核内还有另一种粒子,被其学生查德威克于1932年在α粒子轰击铍核时发现,由此人们认识到原子核由质子和中子组成。  64.1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系。  65.1913年,丹麦物理学家波尔最先得出氢原子能级表达式。  66.1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结  构。天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ 射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。  67.1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素--钋(Po)镭(Ra)。  68.1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,并预言原子核内还有另一种粒子——中子。  69.1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。  70.1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。  71.1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。  72.1942年,在费米。西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、中子减速剂、水泥防护层、热交换器等组成)。  73.1952年,美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。  74.1932年发现了正电子,1964年提出夸克模型。  粒子分三大类:  媒介子——传递各种相互作用的粒子,如:光子。  轻子——不参与强相互作用的粒子,如:电子。中微子。  强子——参与强相互作用的粒子,如:重子(质子、中子、超子)和介子,强子由更基本的粒子夸克组成,夸克带电量可能为元电荷。
104 评论(12)

Xunan_J

高中物理公式总结 物理定理、定律、公式表 一、质点的运动(1)------直线运动 1)匀变速直线运动 平均速度V平=s/t(定义式) 有用推论Vt2-Vo2=2as 中间时刻速度Vt/2=V平=(Vt+Vo)/2 末速度Vt=Vo+at 中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 位移s=V平t=Vot+at2/2=Vt/2t 加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=6km/h。 注: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。 2)自由落体运动 初速度Vo=0 末速度Vt=gt 下落高度h=gt2/2(从Vo位置向下计算) 推论Vt2=2gh 注: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 (3)竖直上抛运动 位移s=Vot-gt2/2 末速度Vt=Vo-gt (g=8m/s2≈10m/s2) 有用推论Vt2-Vo2=-2gs 上升最大高度Hm=Vo2/2g(抛出点算起) 往返时间t=2Vo/g (从抛出落回原位置的时间) 注: (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)----曲线运动、万有引力 1)平抛运动 水平方向速度:Vx=Vo 竖直方向速度:Vy=gt 水平方向位移:x=Vot 竖直方向位移:y=gt2/2 运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 合位移:s=(x2+y2)1/2, 位移方向与水平夹角α:tgα=y/x=gt/2Vo 水平方向加速度:ax=0;竖直方向加速度:ay=g 注: (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成; (2)运动时间由下落高度h(y)决定与水平抛出速度无关; (3)θ与β的关系为tgβ=2tgα; (4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。 2)匀速圆周运动 线速度V=s/t=2πr/T 角速度ω=Φ/t=2π/T=2πf 向心加速度a=V2/r=ω2r=(2π/T)2r 向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合 周期与频率:T=1/f 角速度与线速度的关系:V=ωr 角速度与转速的关系ω=2πn(此处频率与转速意义相同) 主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径®:米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。 注: (1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心; (2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。 3)万有引力 开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)} 万有引力定律:F=Gm1m2/r2 (G=67×10-11N•m2/kg2,方向在它们的连线上) 天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)} 卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量} 第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=9km/s;V2=2km/s;V3=7km/s 地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径} 注: (1)天体运动所需的向心力由万有引力提供,F向=F万; (2)应用万有引力定律可估算天体的质量密度等; (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同; (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反); (5)地球卫星的最大环绕速度和最小发射速度均为9km/s。 三、力(常见的力、力的合成与分解) 1)常见的力 重力G=mg (方向竖直向下,g=8m/s2≈10m/s2,作用点在重心,适用于地球表面附近) 胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)} 滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)} 静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力) 万有引力F=Gm1m2/r2 (G=67×10-11N•m2/kg2,方向在它们的连线上) 静电力F=kQ1Q2/r2 (k=0×109N•m2/C2,方向在它们的连线上) 电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同) 安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0) 洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0) 注: (1)劲度系数k由弹簧自身决定; (2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定; (3)fm略大于μFN,一般视为fm≈μFN; (4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕; (5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C); (6)安培力与洛仑兹力方向均用左手定则判定。 2)力的合成与分解 同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2) 互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2 合力大小范围:|F1-F2|≤F≤|F1+F2| 力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。 四、动力学(运动和力) 牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 牛顿第三运动定律:F=-F´{负号表示方向相反,F、F´各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 共点力的平衡F合=0,推广 {正交分解法、三力汇交原理} 超重:FN>G,失重:FN>r} 受迫振动频率特点:f=f驱动力 发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 机械波、横波、纵波〔见第二册P2〕 波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身; (2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处; (3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式; (4)干涉与衍射是波特有的; (5)振动图象与波动图象; (6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。 六、冲量与动量(物体的受力与动量的变化) 动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同} 冲量:I=Ft {I:冲量(N•s),F:恒力(N),t:力的作用时间(s),方向由F决定} 动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式} 动量守恒定律:p前总=p后总或p=p’´也可以是m1v1+m2v2=m1v1´+m2v2´ 弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒} 非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能} 完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体} 物体m1以v1初速度与静止的物体m2发生弹性正碰: v1´=(m1-m2)v1/(m1+m2) v2´=2m1v1/(m1+m2) 由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒) 子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失 E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移} 注: (1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上; (2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算; (3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等); (4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒; (5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册P128〕。 七、功和能(功是能量转化的量度) 功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角} 重力做功:Wab=mghab {m:物体的质量,g=8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)} 电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb} 电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)} 功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)} 汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率} 汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f) 电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)} 焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)} 纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt 动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)} 重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)} 电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)} 动能定理(对物体做正功,物体的动能增加): W合=mvt2/2-mvo2/2或W合=ΔEK {W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)} 机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2 重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP 注: (1)功率大小表示做功快慢,做功多少表示能量转化多少; (2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功); (3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少 (4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=6×106J,1eV=60×10-19J;*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。 八、分子动理论、能量守恒定律 阿伏加德罗常数NA=02×1023/mol;分子直径数量级10-10米 油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2} 分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 分子间的引力和斥力(1)rr0,f引>f斥,F分子力表现为引力 (4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0 热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的), W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕} 热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性); 开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕} 热力学第三定律:热力学零度不可达到{宇宙温度下限:-15摄氏度(热力学零度)} 注: (1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈; (2)温度是分子平均动能的标志; 3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快; (4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小; (5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0 (6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零; (7)r0为分子处于平衡状态时,分子间的距离; (8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。 九、气体的性质 气体的状态参量: 温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志, 热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)} 体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL 压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=013×105Pa=76cmHg(1Pa=1N/m2) 气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大 理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)} 注: (1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关; (2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。 十、电场 两种电荷、电荷守恒定律、元电荷:(e=60×10-19C);带电体电荷量等于元电荷的整数倍 库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=0×109N•m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)} 真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量} 匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q 电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)} 电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)} 电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值} 电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值) 电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数) 常见电容器〔见第二册P111〕 带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下) 类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d) 抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 注: (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分; (2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直; (3)常见电场的电场线分布要求熟记〔见图[第二册P98]; (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关; (5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面; (6)电容单位换算:1F=106μF=1012PF; (7)电子伏(eV)是能量的单位,1eV=60×10-19J; (8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。 十一、恒定电流 电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)} 欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)} 电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω•m),L:导体的长度(m),S:导体横截面积(m2)} 闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外 {I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)} 电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)} 焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)} 纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R 电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率} 电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比) 电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+ 电流关系 I总=I1=I2=I3 I并=I1+I2+I3+ 电压关系 U总=U1+U2+U3+ U总=U1=U2=U3 功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+
97 评论(8)

Silent-pray

物理笔记一、质点的运动规律①------有关直线运动的公式 1)匀变速直线运动 平均速度V平=s/t(定义式) 有用推论Vt2-Vo2=2as 中间时刻速度Vt/2=V平=(Vt+Vo)/2 末速度Vt=Vo+at 中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 位移s=V平t=Vot+at2/2=Vt/2t 加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=6km/h。 注意: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。 ②自由落体运动 初速度Vo=0 末速度Vt=gt 下落高度h=gt2/2(从Vo位置向下计算) 推论Vt2=2gh 注: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 (3)竖直上抛运动 位移s=Vot-gt2/2 末速度Vt=Vo-gt (g=8m/s2≈10m/s2) 有用推论Vt2-Vo2=-2gs 上升最大高度Hm=Vo2/2g(抛出点算起) 往返时间t=2Vo/g (从抛出落回原位置的时间) 注: (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)----曲线运动、万有引力 ①平抛运动 水平方向速度:Vx=Vo 竖直方向速度:Vy=gt 水平方向位移:x=Vot 竖直方向位移:y=gt2/2 运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 合位移:s=(x2+y2)1/2, 位移方向与水平夹角α:tgα=y/x=gt/2Vo 水平方向加速度:ax=0;竖直方向加速度:ay=g 注: (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成; (2)运动时间由下落高度h(y)决定与水平抛出速度无关; (3)θ与β的关系为tgβ=2tgα; (4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。 ②匀速圆周运动 线速度V=s/t=2πr/T 角速度ω=Φ/t=2π/T=2πf 向心加速度a=V2/r=ω2r=(2π/T)2r 向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合 周期与频率:T=1/f 角速度与线速度的关系:V=ωr 角速度与转速的关系ω=2πn(此处频率与转速意义相同) 主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径®:米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。 注: (1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心; (2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。 ③万有引力 开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)} 万有引力定律:F=Gm1m2/r2 (G=67×10-11N•m2/kg2,方向在它们的连线上) 天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)} 卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量} 第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=9km/s;V2=2km/s;V3=7km/s 地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径} 注: (1)天体运动所需的向心力由万有引力提供,F向=F万; (2)应用万有引力定律可估算天体的质量密度等; (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同; (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反); (5)地球卫星的最大环绕速度和最小发射速度均为9km/s。 三、力(常见的力、力的合成与分解) 1)常见的力 重力G=mg (方向竖直向下,g=8m/s2≈10m/s2,作用点在重心,适用于地球表面附近) 胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)} 滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)} 静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力) 万有引力F=Gm1m2/r2 (G=67×10-11N•m2/kg2,方向在它们的连线上) 静电力F=kQ1Q2/r2 (k=0×109N•m2/C2,方向在它们的连线上) 电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同) 安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0) 洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0) 注: (1)劲度系数k由弹簧自身决定; (2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定; (3)fm略大于μFN,一般视为fm≈μFN; (4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕; (5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C); (6)安培力与洛仑兹力方向均用左手定则判定。 2)力的合成与分解 同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2) 互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2 合力大小范围:|F1-F2|≤F≤|F1+F2| 力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。 四、动力学(运动和力) 牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 牛顿第三运动定律:F=-F´{负号表示方向相反,F、F´各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 共点力的平衡F合=0,推广 {正交分解法、三力汇交原理} 超重:FN>G,失重:FN>r} 受迫振动频率特点:f=f驱动力 发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 机械波、横波、纵波〔见第二册P2〕 波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身; (2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处; (3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式; (4)干涉与衍射是波特有的; (5)振动图象与波动图象; (6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。 六、冲量与动量(物体的受力与动量的变化) 动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同} 冲量:I=Ft {I:冲量(N•s),F:恒力(N),t:力的作用时间(s),方向由F决定} 动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式} 动量守恒定律:p前总=p后总或p=p’´也可以是m1v1+m2v2=m1v1´+m2v2´ 弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒} 非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能} 完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体} 物体m1以v1初速度与静止的物体m2发生弹性正碰: v1´=(m1-m2)v1/(m1+m2) v2´=2m1v1/(m1+m2) 由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒) 子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失 E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移} 注: (1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上; (2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算; (3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等); (4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒; (5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册P128〕。 七、功和能(功是能量转化的量度) 功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角} 重力做功:Wab=mghab {m:物体的质量,g=8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)} 电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb} 电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)} 功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)} 汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率} 汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f) 电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)} 焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)} 纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt 动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)} 重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)} 电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)} 动能定理(对物体做正功,物体的动能增加): W合=mvt2/2-mvo2/2或W合=ΔEK {W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)} 机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2 重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP 注: (1)功率大小表示做功快慢,做功多少表示能量转化多少; (2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功); (3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少 (4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=6×106J,1eV=60×10-19J;*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。 八、分子动理论、能量守恒定律 阿伏加德罗常数NA=02×1023/mol;分子直径数量级10-10米 油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2} 分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 分子间的引力和斥力(1)rr0,f引>f斥,F分子力表现为引力 (4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0 热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的), W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕} 热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性); 开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕} 热力学第三定律:热力学零度不可达到{宇宙温度下限:-15摄氏度(热力学零度)} 注: (1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈; (2)温度是分子平均动能的标志; 3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快; (4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小; (5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0 (6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零; (7)r0为分子处于平衡状态时,分子间的距离; (8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。 九、气体的性质 气体的状态参量: 温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志, 热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)} 体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL 压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=013×105Pa=76cmHg(1Pa=1N/m2) 气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大 理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)} 注: (1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关; (2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。 十、电场 两种电荷、电荷守恒定律、元电荷:(e=60×10-19C);带电体电荷量等于元电荷的整数倍 库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=0×109N•m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)} 真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量} 匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q 电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)} 电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)} 电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值} 电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值) 电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数) 常见电容器〔见第二册P111〕 带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下) 类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d) 抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 注: (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分; (2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直; (3)常见电场的电场线分布要求熟记〔见图[第二册P98]; (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关; (5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面; (6)电容单位换算:1F=106μF=1012PF; (7)电子伏(eV)是能量的单位,1eV=60×10-19J; (8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。 十一、恒定电流 电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)} 欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)} 电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω•m),L:导体的长度(m),S:导体横截面积(m2)} 闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外 {I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)} 电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)} 焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)} 纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R 电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率} 电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比) 电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+ 电流关系 I总=I1=I2=I3 I并=I1+I2+I3+ 电压关系 U总=U1+U2+U3+ U总=U1=U2=U3 功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+Pn
216 评论(12)

相关问答