ljun90
这是一段很长的历史,我做下搬运工…… 1、 人工智能的诞生(20世纪40~50年代) 1950年:图灵测试 1950年,著名的图灵测试诞生,按照“人工智能之父”艾伦·图灵的定义:如果一台机器能够与人类展开对话(通过电传设备)而不能被辨别出其机器身份,那么称这台机器具有智能。同一年,图灵还预言会创造出具有真正智能的机器的可能性。 1954年:第一台可编程机器人诞生 1954年美国人乔治·戴沃尔设计了世界上第一台可编程机器人。 1956年:人工智能诞生 1956年夏天,美国达特茅斯学院举行了历史上第一次人工智能研讨会,被认为是人工智能诞生的标志。会上,麦卡锡首次提出了“人工智能”这个概念,纽厄尔和西蒙则展示了编写的逻辑理论机器。 2、 人工智能的黄金时代(20世纪50~70年代) 1966年~1972年:首台人工智能机器人Shakey诞生 1966年~1972年期间,美国斯坦福国际研究所研制出机器人Shakey,这是首台采用人工智能的移动机器人。 1966年:世界上第一个聊天机器人ELIZA发布 美国麻省理工学院(MIT)的魏泽鲍姆发布了世界上第一个聊天机器人ELIZA。ELIZA的智能之处在于她能通过脚本理解简单的自然语言,并能产生类似人类的互动。 1968年:计算机鼠标发明 1968年12月9日,美国加州斯坦福研究所的道格·恩格勒巴特发明计算机鼠标,构想出了超文本链接概念,它在几十年后成了现代互联网的根基。 3、 人工智能的低谷(20世纪70~80年代) 20世纪70年代初,人工智能遭遇了瓶颈。当时的计算机有限的内存和处理速度不足以解决任何实际的人工智能问题。要求程序对这个世界具有儿童水平的认识,研究者们很快发现这个要求太高了:1970年没人能够做出如此巨大的数据库,也没人知道一个程序怎样才能学到如此丰富的信息。由于缺乏进展,对人工智能提供资助的机构(如英国政府、美国国防部高级研究计划局和美国国家科学委员会)对无方向的人工智能研究逐渐停止了资助。美国国家科学委员会(NRC)在拨款二千万美元后停止资助。 1997年5月10日,IBM“深蓝”超级计算机再度挑战卡斯帕罗夫,比赛在5月11日结束,最终“深蓝”以5:5击败卡斯帕罗夫,成为首个在标准比赛时限内击败国际象棋世界冠军的电脑系统。供 4、 人工智能的繁荣期(1980年~1987年) 1981年:日本研发人工智能计算机 1981年,日本经济产业省拨款5亿美元用以研发第五代计算机项目,在当时被叫做人工智能计算机。随后,英国、美国纷纷响应,开始向信息技术领域的研究提供大量资金。 1984年:启动Cyc(大百科全书)项目 在美国人道格拉斯·莱纳特的带领下,启动了Cyc项目,其目标是使人工智能的应用能够以类似人类推理的方式工作。 1986年:3D打印机问世 美国发明家查尔斯·赫尔制造出人类历史上首个3D打印机。 5、 人工智能的冬天(1987年~1993年) “AI(人工智能)之冬”一词由经历过1974年经费削减的研究者们创造出来。他们注意到了对专家系统的狂热追捧,预计不久后人们将转向失望。事实被他们不幸言中,专家系统的实用性仅仅局限于某些特定情景。到了上世纪80年代晚期,美国国防部高级研究计划局(DARPA)的新任领导认为人工智能并非“下一个浪潮”,拨款将倾向于那些看起来更容易出成果的项目。 6、 人工智能真正的春天(1993年至今) 1997年:电脑深蓝战胜国际象棋世界冠军 1997年5月11日,IBM公司的电脑“深蓝”战胜国际象棋世界冠军卡斯帕罗夫,成为首个在标准比赛时限内击败国际象棋世界冠军的电脑系统。 2011年:开发出使用自然语言回答问题的人工智能程序 2011年,Watson(沃森)作为IBM公司开发的使用自然语言回答问题的人工智能程序参加美国智力问答节目,打败两位人类冠军,赢得了100万美元的奖金。 2012年:Spaun诞生 加拿大神经学家团队创造了一个具备简单认知能力、有250万个模拟“神经元”的虚拟大脑,命名为“Spaun”,并通过了最基本的智商测试。 2013年:深度学习算法被广泛运用在产品开发中 Facebook人工智能实验室成立,探索深度学习领域,借此为Facebook用户提供更智能化的产品体验;Google收购了语音和图像识别公司DNNResearch,推广深度学习平台;百度创立了深度学习研究院等。 2015年:人工智能突破之年 Google开源了利用大量数据直接就能训练计算机来完成任务的第二代机器学习平台Tensor Flow;剑桥大学建立人工智能研究所等。 
AI(Artificial Intelligence,人工智能) 。“人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的, 现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确, 因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”, 可见复杂工作的定义是随着时代的发展和技术的进步而变化的, 人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展, 一方面又转向更有意义、更加困难的目标。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机, 人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。除了计算机科学以外, 人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。 人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。知识表示是人工智能的基本问题之一,推理和搜索都与表示方法密切相关。常用的知识表示方法有:逻辑表示法、产生式表示法、语义网络表示法和框架表示法等。常识,自然为人们所关注,已提出多种方法,如非单调推理、定性推理就是从不同角度来表达常识和处理常识的。问题求解中的自动推理是知识的使用过程,由于有多种知识表示方法,相应地有多种推理方法。推理过程一般可分为演绎推理和非演绎推理。谓词逻辑是演绎推理的基础。结构化表示下的继承性能推理是非演绎性的。由于知识处理的需要,近几年来提出了多种非演泽的推理方法,如连接机制推理、类比推理、基于示例的推理、反绎推理和受限推理等。搜索是人工智能的一种问题求解方法,搜索策略决定着问题求解的一个推理步骤中知识被使用的优先关系。可分为无信息导引的盲目搜索和利用经验知识导引的启发式搜索。启发式知识常由启发式函数来表示,启发式知识利用得越充分,求解问题的搜索空间就越小。典型的启发式搜索方法有A*、AO*算法等。近几年搜索方法研究开始注意那些具有百万节点的超大规模的搜索问题。机器学习是人工智能的另一重要课题。机器学习是指在一定的知识表示意义下获取新知识的过程,按照学习机制的不同,主要有归纳学习、分析学习、连接机制学习和遗传学习等。知识处理系统主要由知识库和推理机组成。知识库存储系统所需要的知识,当知识量较大而又有多种表示方法时,知识的合理组织与管理是重要的。推理机在问题求解时,规定使用知识的基本方法和策略,推理过程中为记录结果或通信需设数据库或采用黑板机制。如果在知识库中存储的是某一领域(如医疗诊断)的专家知识,则这样的知识系统称为专家系统。为适应复杂问题的求解需要,单一的专家系统向多主体的分布式人工智能系统发展,这时知识共享、主体间的协作、矛盾的出现和处理将是研究的关键问题。 `
你还是自己去汉斯出版社 的官网找下相关文献看看学习学习吧
【1950-1956年是人工智能的诞生年】图灵测试1950Dartmouth 会议1956(1956年夏季,以麦卡赛、明斯基、罗切斯特和申农等为首的一批有远见卓识的年轻科学家在一起聚会,共同研究和探讨用机器模拟智能的一系列有关问题,并首次提出了“人工智能”这一术语,它标志着“人工智能”这门新兴学科的正式诞生。)【1956-1974 年是人工智能的黄金年】第一个人工智能程序LT逻辑理论家1958(西蒙和纽维尔)LISP编程语言1958(约翰麦卡锡)用于机器翻译的语义网1960(马斯特曼和剑桥大学同事)模式识别-第一个机器学习论文发表(1963)Dendral 专家系统1965基于规则的Mycin医学诊断程序1974【1974-1980年是人工智能第一个冬天】人工智能:综合调查1973(来特希尔)项目失败,列强削减科研经费【1980-1987年是人工智能繁荣期】
人工智能在当代社会已经是一个不可阻拦的发展大趋势,而且人工智能的影响和运用也深入到了社会生活等方方面面,对人类的衣食住行产生了巨大的改变,同时也在改变着传统或者现代的产业结构和人员配置。人类生活的各个行业例如农业、体育、医疗卫生、制造业、律师行业、记者和编辑行业等领域都已经在或者将会在未来深入使用人工智能技术,这对于未来世界的改变是巨大而且无法想象的。在未来几年内,机器人与人工智能能给世界带来的影响将远远超过个人计算和互联网在过去三十年间已经对世界所造成的改变。人工智能将成为未来10年内的产业新风口,像200I安钱电力彻底颠覆人类世界一样,人工智能也必将掀起一场新的而且持续深入的产业革命。但是事情的发展总是两面性的,人工智能的发展和百年前的工业革命一样将会在很大程度上造成劳动力的转换,在这个过程中,将会出现一系列的问题,而这些问题很有可能成为阻碍人工智能继续发展的巨大阻力。人工智能领域的最新发展对科技变化的促进作用可能会以两种基本的方式搅乱我们的劳动市场。首先,大部分自动化作业都会代替工人,从而减少工作的机会,这就意味着血药人工作的地方变得更少,这种威胁显而易见,也很容易度量;另外,很多科技进步会通过让商家重组和重建运营的方式来改变游戏规则,这样的组织精华和流程不仅经常会淘汰工作岗位,也会淘汰技能。但从总体上来说,人工智能所带给未来人类世界的好处是要大于其弊端的,而且在未来人类生活的理想蓝图中,人工智能也会发挥着很大的作用和推动力,这是一个必然也无法阻止的趋势。