期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    3

  • 浏览数

    299

363753931
首页 > 期刊问答网 > 期刊问答 > 宋元数学史论文集

3个回答 默认排序1
  • 默认排序
  • 按时间排序

her8o

已采纳
我国的数学有悠久的历史和光辉的成就,内容非常丰富,在世界数学史上也占有十分重要的地位。钱宝琮从事中国数学史研究始于1919年的五四运动时期。当时的新文化运动对知识界产生了强烈的冲击,也给予正执教于苏州工业学校的钱宝琮以很大的启发。他常到书店买新出版的杂志看,读过全部再版的《新青年》,尤其喜欢看胡适、钱玄同等的文章。在吸取新思想之后,他抛弃了以前的“保存国粹”的想法,渐渐知道“整理国故”、“发扬国学”的必要,于是努力学习清代汉学家的考证工作,注意收集中算古籍,准备研究中国古代数学的发展历史。自本世纪20年代初,钱宝琮陆续有研究论文问世。如1921年发表的《九章问题分类考》、《方程算法源流考》、《百鸡术源流考》、《求一术源流考》、《记数法源流考》等,就是他的最早的一批文章。此后,他继续在中国数学史和中国天文学史领域辛勤耕耘数十年,获得了丰硕的成果,为中国科学史这一学科的建设和发展作出了巨大的贡献。1.主编《中国数学史》钱宝琮在经过多年专题研究之后,于1924年秋着手撰写中国数学史专著,并在南开大学执教时编成《中国算学史讲义》,随后又几经增减,于1932年出版了《中国算学史》(上卷)。书中论述了从上古、先秦一直到明万历年间西方数学传入之前中国数学的发展情形和主要成就,并且包含有关天文历法和中外数学交流等方面的丰富内容。这部著作是钱宝琮前一阶段科学史研究工作的总结。在此后的30多年里,他又进行了题材广泛的专题研究,并于1964年主编出版了《中国数学史》。《中国数学史》是中国科学院中国自然科学史研究室(自然科学史研究所前身)数学史组的老中青学者集体编写的,从初稿的执笔到改写定稿都经过反复的讨论,大部分出自钱宝琮的手笔。全书共分四编,前三编写到明朝中叶,相当于《中国算学史》(上卷)所包括的时期,第四编则为明末至清末的中国数学史。这部著作系统地和简明地叙述了自上古时起到20世纪初叶(1911年辛亥革命)止中国数学发生发展的历史,内容包括各个时期中国数学的发展情形和主要成就,历代杰出数学家生平事迹、数学成就和数学思想的适当评价,数学教育和中外数学交流等,同时努力阐明各阶段数学发展与当时社会经济、政治以及哲学思想之间的关系,集中体现了钱宝琮数十年悉心研究的结果,也吸收了当时数学史研究领域的新成果。《中国数学史》史论结合,体系严整,脉络清晰,考订翔实,立论精审,问世后很快就得到国内外学术界的好评,成为中国数学史研究领域的经典之作。在1961年《中国数学史》定稿后,钱宝琮曾写了一首诗:“积人积智几番新,算术流传世界珍。微数无名前进路,明源活法后来薪。存真去伪重评价,博古通今孰主宾。合志共谋疑义析,衰年未许作闲人。”当时他虽年事已高,但雄心未减,还想做更多的工作。按照他的想法,要继续编写中国天文学史和世界数学史。他还提出,在《中国数学史》出版以后,要对各个断代的数学发展情况,继续作深入的研究,以便在三四年后,根据读者的意见,再进行一次增订和修改。1966年出版的《宋元数学史论文集》就是这个研究计划的一部分。但是,由于发生了“文化大革命”,这个计划未能继续实行。2.校点《算经十书》中国古代数学典籍是很丰富的,但在漫长的流传过程中,散失、伪托和衍文脱误的情况十分严重,给研究者带来相当大的困难。因此,数学史的史料和典籍的考订工作是数学史研究的一项重要的基础工作。钱宝琮认为,撰文著书,务要“事皆征实,言必近真”,要把自己的论点和论据建立在翔实可靠的基础上,因而他在这方面下了很大的功夫。在《钱宝琼科学史论文选集》所收录的33篇论文中,就有10多篇属于这方面的工作。他的第一批数学史论文就是关于九章问题、方程术、求一术、百鸡术、记数法等算法源流的考证,后被汇刊为《古算考源》。他对《九章》、《周髀》、《孙子》、《夏侯阳》等算书的断代问题也作了详细的考证,将《九章算术》断为公元1世纪成书,将《周髀算经》断为公元前1世纪成书,提出现传本《夏侯阳算经》是唐中叶的作品等等,这些看法由于旁征博引,证据充分,推断合理,很有说服力,已为多数学者所接受。唐代“立于学官”的10部算经是具有代表性意义的十种数学著作,它们是了解我国古代数学发展情况必不可少的文献。在大量考证和专题研究以及对照多种版本精心校勘的基础上,1963年出版了钱宝琮校点本《算经十书》(其中不包括已失传的祖冲之《缀术》,但收有甄鸾《数术记遗》),这是他在中算古籍考订和校点方面的重大成果,也是这部书目前最好的版本,受到学术界的普遍欢迎。3.数学史的专题研究钱宝琮对于中国数学史上的重大课题,包括历代重要数学家、数学理论和数学方法等,作了一系列的专题研究,其成果已凝聚在他的专题论文和数学史专著中。例如,关于中国古代的圆周率和割圆术,整数勾股形,增乘开方法,奇零分数记法,以及秦九韶和《数书九章》,梅文鼎和《梅氏丛书辑要》,汪莱和《衡斋算学》等,都有专文论述。这些文章有丰富的史料,精彩深刻的论述,大多是开创性的工作,发人所未发。后来的许多科学史工作者都从中吸取营养,得到启发,在其工作的基础上继续钻研,取得了不少新成果。4.与数学史有关的学科史研究钱宝琮认为,数学的发展不可能是孤立的,它与其他学科(特别是天文历法)的发展,常有密切之关系。因此在研究数学史的同时,他还对天文历法、音律和《墨经》、力学等进行了深入的研究。他所撰写的论文,如《甘石星经源流考》、《论二十八宿之来历》、《授时历法略论》、《盖天说源流考》、《从春秋到明末的历法沿革》等,所论及的都是众说纷纭、难度很大的问题,有很高的水平和广泛的影响。例如在《授时历法略论》中,指出了授时历法在天文数据及招差法、弧矢割圆法等方面的成就,并且把授时历法和当时的西域回回历法作了对比研究,否定了明末以来一些人认为授时历来自回回历的论点。《从春秋到明末的历法沿革》则为中国历法史的研究建立了新的数理基础。钱宝琮的这些论文和其他一些论文已经成为中国古代天文历法研究者必读的作品。5.中外数学比较和中外数学交流中国古代数学有独具特色的体系并取得了极其辉煌的成就,是世界数学史非常重要的组成部分,对世界数学发展作出了重要贡献。但是一些科学史家特别是西方科学史家却很少了解或不肯承认中国数学的作用和影响,甚至贬低中国数学在世界数学史上的历史地位。这种状况反映出一种由来已久的偏见,当然是不符合事实的。钱宝琮很早就指出,“中国算学与印度、阿拉伯、日本及西洋各国算学均有授受关系”。由于这类问题涉及面广,还有史料和语言等方面的障碍,因而研究难度很大,进行研究的人也很少。钱宝琮对此做了不少开创性的工作,他所撰写的论文,如《九章算术盈不足术流传欧洲考》、《印度算学与中国算学之关系》等,内容非常丰富,证据相当有力,现在还常为人们所引用。在《中国数学史》中,他列举出14项证据来说明中国数学对印度数学的影响,也是很有说服力的。关于中外数学交流和比较研究方面,还存在大量未解决的问题,至今仍然是数学史上值得深入研究的重要课题。6.数学思想史研究中国古代数学与古希腊数学有不同的体系和特点,这与两者的社会条件和哲学思想有密切的关系。钱宝琮晚年提出要加强数学思想史研究,并撰写了《宋元时期数学与道学的关系》、《九章算术及其刘徽注与哲学思想的关系》、《讨论中国古代数学的逻辑》等文章,探讨了数学与宋元理学、刘徽与荀子思想的关系等问题,为把数学史研究提高到更高的层次和挖掘更深刻的内容,作了开榛辟莽的工作。运用正确的立场、观点和方法来整理和研究我国丰富的数学遗产和科学遗产,是一项具有重要历史价值、学术价值和现实意义的工作。钱宝琮在这一领域作出了杰出的和多方面的贡献,因而得到了学术界的广泛赞誉。著名数学家吴文俊说:“李俨、钱宝琮二老在废墟上挖掘残卷,并将传统内容详作评介,使有志者有书可读有迹可寻。以我个人而言,我对传统数学的基本认识,首先得于二老著作。使传统数学在西算的狂风巨浪冲击下不致从此沉沦无踪,二老之功不在王梅(指清初天算大家王锡阐、梅文鼎)二先算之下。”又说:“几乎濒临夭折的中国传统数学,赖王梅李钱等先辈的努力而绝路逢生并重现光辉。”著名数学家陈省身、华罗庚、苏步青以及英国著名科学史家李约瑟(J.) Needham)博士等也都对钱宝琮的成就给予了很高的评价。 钱宝琮长期从事数学教育工作,是数学教育界的老前辈。从1912年起,他先后在上海南洋公学附中、苏州工专、南开大学、中央大学等大专院校讲授数学,1928年到浙江大学担任首届数学系主任,为浙江大学数学系的建立和发展作出了重要贡献。他在长达40余年的教学生涯中,木铎金声,教泽广被,桃李满天下。在他的学生中,有著名数学家陈省身、江泽涵、吴大任、申又枨、孙泽瀛、程民德、张素诚等,著名数学家华罗庚也以师长事之,对他十分尊崇。他的许多学生都已成为科学技术各个领域的重要骨干和学术带头人。他的严谨的学风和生动的教法,以及培养青年、关怀学生的热忱给所有与他有过接触的人留下了深刻的印象。钱宝琮是一位热爱祖国、热爱中华民族优秀文化传统的学者。他经常在课堂上用生动的语言、典型的事例,满腔热情地宣讲中华民族的悠久历史和灿烂文明,介绍中国古代光辉的数学成就,教育学生正确认识我们的伟大祖国,珍视中华民族的优秀文化遗产,鼓励学生增强民族自豪感和自信心,奋发图强,努力成为对祖国繁荣昌盛和科技发达有所贡献的人。既教书又育人,结合教学培养学生的爱国主义思想,是他教学工作的一大特色。钱宝琮数学教学工作的另一特色是重视实际,重视计算。他讲授微分方程,不仅教给学生复杂的数学理论,而且也阐述微分方程怎样来自实际,它的解又有什么物理意义,使学生获得比较全面的知识。一般教师谈到求代数方程的近似根问题,经常取整系数方程作示例。而他认为实际问题很少恰恰有系数为整数的情形,因而喜欢采用系数为小数的题目,借以提高学生的实际计算能力。在20至40年代数学界偏重理论的风气下,这种重视理论联系实际,注意培养基本技巧和能力的作法,是非常难能可贵的,并且对当时的数学教学产生了积极的影响。在教学活动中,钱宝琮很注重教学方法,特别是非常注意调动学生学习的自觉性和主动性,善于启发学生自己的思路。他讲课深入浅出,通俗易懂,旁征博引,把比较枯燥抽象的数学内容讲得透彻生动,饶有风趣,使学生印象深刻,取得较好的效果。在学业上,他对学生的要求是很严格的,甚至给人一种严厉感。对于好的学生,好的学习方法,以至好的解题方法,他必在课堂上予以表扬;而对学习敷衍,作业马虎,甚而文字不顺,写错别字等,也决不留情,予以纠正,有时还用尖锐的措词,当众进行批评。但学生们都能体会他的良苦用心。他的严厉决不是为了自己,而正是为了学生的将来。在平常与学生接触中,他却又平易近人,有说有笑,谈古论今,妙趣横生,使学生对他怀有浓郁的亲切感。这种十分融洽的师生关系,是搞好教学工作的重要基础。1956年以后,钱宝琮调入中国科学院专门从事科学史研究,同时又为培养新一代科学史工作者作了大量的工作。他关怀和指导后学是满腔热情的和不遗余力的。他不仅乐于解答青年人各种各样的问题,为了培养青年人,他甚至常常把自己掌握的材料或已构思成熟的题目和主要想法,有意识地拿出来,让后生晚辈去作文章,借以得到锻炼和提高。他虽是名重一时的学术权威,但从不因循守旧,固步自封,以居高临下的姿态对待青年人,相反地,却鼓励青年人敢于发表自己的看法,敢于展开学术争论,要尊重前人又要有新的贡献。他认为:“在学术上并不存在青年人、老年人的关系,应该展开争论。如果什么都听老年人的,那么就会一代不如一代。老年人也不应该以长者自居,不肯听取青年人的意见。当然,老先生可能有些经验,这是应该尊重的。”钱宝琮是运用现代数学知识和科学方法整理和研究中国古代丰富的数学遗产并取得许多重要成果的杰出学者,也是率先在大专院校开展数学史教育的先驱。早在20年代中期在南开大学数学系任教期间,他就编写出《中国算学史讲义》并出版了油印本,为学生们开设了数学史课程。抗日战争前和浙江大学西迁时,在杭州、贵州贵阳、湖南衡山等地,他又多次参加中学教员讲习班讲授数学史。在50年代初和中期,为了配合当时的爱国主义教育和适应向科学进军的需要,他除在报刊上发表一系列宣传中国古代数学成就的文章以外,还定期从杭州浙江大学到上海华东师范大学去讲中国数学史,并为杭州市中学数学教学研究班开设了数学史课;到北京以后,又为北京师范大学开设了中国数学史讲座。1957年中国青年出版社出版的《中国数学史话》,主要就是根据他在北京师范大学的讲稿整理而成的。钱宝琮长期在大学和研究部门工作,但他一直十分关心中学的数学教育,并提出数学史研究的一个重要目标是为中学数学教师服务。中学数学教师要教好学生,当然需要数学教学法,同时也应该知道数学发展史,例如要了解新的数学概念和数学方法是如何从实践中来的,这些概念和方法产生的客观条件和发展过程等等。显然,具有广博的知识背景才能将数学课讲得更加生动,清晰和透彻,从而提高教学水平和教学质量。他认为师范院校应该开设数学史课,但因为现在没人教,也没有好的参考书,所以还开不成。因此,他提出要编写一部世界数学史,把重点放在初等数学的发展史方面,主要说明中学数学教科书(包括算术、代数、几何、三角、解析几何)中的教材的来源,以供中学数学教师参考。后来,他亲自编写出《算术史》,又组织青年数学史工作者编写出《代数学史》和《几何学史》。但遗憾的是,这几部书稿由于种种原因而未能正式出版。中国数学史是一个重要的和很有特色的研究领域。80年代以来,国内外学术界对于中国数学史的研究是相当活跃的,数学史研究队伍不断地壮大起来,许多高等院校及各个领域专职的或业余的数学史工作者,在钱宝琮等前辈数学史家奠定的坚实基础上,又作了大量工作,取得了许多重要成果,还编写出适应于各种需要的数学史专著和教材,使数学史领域出现了前所未有的欣欣向荣景象。1992年8月在北京,国际数学史学会、中国科学技术史学会、中国数学会和中国科学院自然科学史研究所联合举行了《纪念李俨钱宝琮诞辰100周年国际学术讨论会》,以纪念这两位著名数学史家的杰出贡献。

宋元数学史论文集

333 评论(13)

zssky

中国数学发展史 宋元数学 中国古代数学在宋元时期达到繁荣的顶点,涌现了一大批卓有成就的数学家。其中秦九韶、李冶、杨辉和朱世杰成就最为突出,被誉为“宋元数学四大家”。 秦九韶(公元1202-1261),字道古,安岳人。其父秦季栖,进士出身,官至上部郎中、秘书少监。 秦九韶聪敏勤学。宋绍定四年(1231),秦九韶考中进士,先后担任县尉、通判、参议官、州守、同农、寺丞等职。先后在湖北、安徽、江苏、浙江等地做官,1261年左右被贬至梅州(今广东梅县),不久死于任所。他在政务之余,对数学进行虔心钻研,并广泛搜集历学、数学、星象、音律、营造等资料,进行分析、研究。 宋淳祜四至七年(1244至1247),他在为母亲守孝时,把长期积累的数学知识和研究所得加以编辑,写成了闻名的巨著《数学九章》,并创造了“大衍求一术”。这 不仅在当时处于世界领先地位,在近代数学和现代电子计算设计中,也起到了重要作用,被称为“中国剩余定理”。他所论的“正负开方术”,被称为“秦九韶程序”。现在,世界各国从小学、中学到大学的数学课程,几乎都接触到他的定理、定律和解题原则。秦九韶在数学方面的研究成果,比英国数学家取得的成果要早800多年。 李冶(1192-1279)是中国古代数学家,字仁卿,号敬斋,真定府栾城县(今河北省栾城县)人。 1234年初,金朝终于为蒙古所灭.金朝的灭亡给李冶生活带来不幸,但由于他不再为官,这在客观上使他的科学研究有了充分的时间.他在桐川的研究工作是多方面的,包括数学、文学、历史、天文、哲学、医学.其中最有价值的工作是对天元术进行了全面总结,写成数学史上的不朽名著----《测圆海镜》。 杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。 他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。 杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的还编成了歌决,如九归口决。 他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分,勾股等九类。 他非常重视数学教育的普及和发展,在《算法通变本末》中,杨辉为初学者制订的"习算纲目"是中国数学教育史上的重要文献。 朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法)。 中国元代数学家,对多元高次方程组解法、高阶等差级数求和,高次内插法都有深入研究,他著有《算学启蒙》(1299年)、《四元玉鉴》(1303年)各3卷,在后者中讨论了多达四元的高次联立方程组解法,联系在一起的多项式的表达和运算以及消去法,已接近近世代数学,处于世界领先地位,他通晓高次招差法公式,比西方早四百年,中外数学史家都高度评价朱世杰和他的名著《四元玉鉴》。 宋元数学,从时间上说它包括由北宋到元末大约四百年的时间。在此期间,涌现了许多优秀的数学家,其中最卓越的代表,如通常所说的“宋元四大家”的杨辉、秦九韶、李冶、朱世杰等,在数学史占有重要的地位。同时期的欧洲正处在中世纪,中国数学家的光辉灿烂成就,在部分问题的解决上,远远走在世界前列。   宋元数学是在汉唐数学的基础上发展起来的,不仅贾宪、杨辉、秦九韶的数学著作都称为“九章”,前二者甚至就是《九章》的问题编集,而且更多的数学问题都来源于《九章》,如李冶、郭守敬等人的成果。由于雕版印刷术的发达,北宋王朝在元丰七年由官方的“秘书省”刊到了《九章算术》等汉唐以来的十部算经,作为学校的课本[1]。《算经十书》作为教科书被印刷出来,对宋元数学教育以至数学研究方面所产生的影响是不言而喻的。 有名的数学家及其著作 张丘建--<张丘建算经> 《张丘建算经》三卷,据钱宝琮考,约成书于公元466~485年间张丘建,北魏时清河(今山东临清一带)人,生平不详。最小公倍数的应用、等差数列各元素互求以及“百鸡术”等是其主要成就。“百鸡术”是世界著名的不定方程问题。13世纪意大利斐波那契《算经》、15世纪阿拉伯阿尔·卡西<<算术之钥》等著作中均出现有相同的问题。 贾宪:〈〈黄帝九章算经细草〉〉 中国古典数学家在宋元时期达到了高峰,这一发展的序幕是“贾宪三角”(二项展开系数表)的发现及与之密切相关的高次开方法(“增乘开方法”)的创立。贾宪,北宋人,约于1050年左右完成〈〈黄帝九章算经细草〉〉,原书佚失,但其主要内容被杨辉(约13世纪中)著作所抄录,因能传世。杨辉〈〈详解九章算法〉〉(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是著名的“贾宪三角”,或称“杨辉三角”。〈〈详解九章算法〉〉同时录有贾宪进行高次幂开方的“增乘开方法”。 贾宪三角在西方文献中称“帕斯卡三角”,1654年为法国数学家 B·帕斯卡重新发现。 秦九韶:〈〈数书九章〉〉 秦九韶(约1202~1261),字道吉,四川安岳人,先后在湖北、安徽、江苏、浙江等地做官,1261年左右被贬至梅州(今广东梅县),不久死于任所。秦九韶与李冶、杨辉、朱世杰并称宋元数学四大家。他早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的〈〈数书九章〉〉。〈〈数书九章〉〉全书共18卷,81题,分九大类(大衍、天时、田域、测望、赋役、钱谷、营建、军旅、市易)。其最重要的数学成就——“大衍总数术”(一次同余组解法)与“正负开方术”(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。 李冶:《测圆海镜》——开元术 随着高次方程数值求解技术的发展,列方程的方法也相应产生,这就是所谓“开元术”。在传世的宋元数学著作中,首先系统阐述开元术的是李冶的《测圆海镜》。 李冶(1192~1279)原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回家。1248年撰成《测圆海镜》,其主要目的就是说明用开元术列方程的方法。“开元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某”,可以说是符号代数的尝试。李冶还有另一部数学著作《益古演段》(1259),也是讲解开元术的。 朱世杰:《四元玉鉴》 朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法) 华罗庚 “数学,如音乐一样,以奇才辈出而著称,这些人即便没有受过正规的教育也才华横溢。虽然华罗庚谦虚地避免使用奇才这个词,但它却恰当地描述了这位杰出的中国数学家。” --G·B·Kolata 华罗庚是一个传奇式的人物,是一个自学成才的数学家。 他1910年11月12日出生于江苏省金坛县一个城市贫民的家庭,1985年6月12日,中国数学届陨灭一颗巨星-华罗庚在日本讲学时不幸因心肌梗塞逝世了。 华罗庚是蜚声中外的数学家。他是中国解析数论、典型群、矩阵几何学、自守与多复便函数等多方面研究的创始人与开拓者。他的著名学术论文《典型域上的多元复变函数论》,由于应用了前人没有用过的方法,在数学领域内做了开拓性的工作,于1957年荣获我国科学一等奖。他研究的成果被国际数学界命名为“华氏定理”,“布劳威尔-加当-华定理”。华罗庚一生精勤不倦,奋斗不息,著作很多,研究领域很广。他共发表学术论文约二百篇,专著有《堆垒素数论》、《高等数学引论》、《指数和的估计及其在数论中的应用》、《典型群》、《多复变数函数论中的典型域的分析》、《数论引导》、《数值积分及其应用》、《从单位圆谈起》、《优选法》、《二阶两个自变数两个未知函数的常系数偏微分方程》、《华罗庚论文选集》等12部。
91 评论(9)

Old胖

宋元数学总结  唐朝亡后,五代十国仍是军阀混战的继续,直到北宋王朝统一了中国,农业、手工业、商业迅速繁荣,科学技术突飞猛进。从公元十一世纪到十四世纪(宋、元两代),筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期。这一时期出现了一批著名的数学家和数学著作,列举如下:贾宪的《黄帝九章算法细草》(11世纪中叶),刘益的《议古根源》(12世纪中叶),秦九韶的《数书九章》(1247),李冶的《测圆海镜》(1248)和《益古演段》(1259),杨辉的《详解九章算法》(1261)、《日用算法》(1262)和《杨辉算法》(1274-1275,朱世杰的《算学启蒙》(1299)和《四元玉鉴》(1303)等等。  宋元数学在很多领域都达到了中国古代数学,甚至是当时世界数学的巅峰。其中主要的工作有:(1)高次方程数值解法;(2)天元术与四元术,即高次方程的立法与解法,是中国数学史上首次引入符号,并用符号运算来解决建立高次方程的问题;(3)大衍求一术,即一次同余式组的解法,现在称为中国剩余定理;(4)招差术和垛积术,即高次内插法和高阶等差级数求和。  另外,其它成就包括勾股形解法新的发展、解球面直角三角形的研究、纵横图(幻方)的研究、小数(十进分数)具体的应用、珠算的出现等等。  这一时期民间数学教育也有一定的发展,以及中国和伊斯兰国家之间的数学知识的交流也得到了发展。  百度文库里有的下载,建议多找几种版本,拼拼凑凑,一篇论文再加点润色,可以很棒的。
201 评论(13)

相关问答