DAYTOY.
对于互质的整数a和n,有a^φ(n) ≡ 1 (mod n) 简单多面体的顶点数V、面数F及棱数E间有关系 V+F-E=2 这个公式叫欧拉公式。公式描述了简单多面体顶点数、面数、棱数特有的规律。还有很多 在参考资料上能看到 
欧拉,瑞士数学家,13岁进巴塞尔大学读书,得到著名数学家贝努利的精心指导.欧拉是科学史上最多产的一位杰出的数学家,他从19岁开始发表论文,直到76岁,他那不倦的一生,共写下了886本书籍和论文,其中在世时发表了700多篇论文。彼得堡科学院为了整理他的著作,整整用了47年。 欧拉著作惊人的高产并不是偶然的。他那顽强的毅力和孜孜不倦的治学精神,可以使他在任何不良的环境中工作:他常常抱着孩子在膝盖上完成论文。即使在他双目失明后的17年间,也没有停止对数学的研究,口述了好几本书和400余篇的论文。当他写出了计算天王星轨道的计算要领后离开了人世。欧拉永远是我们可敬的老师。 欧拉公式简单多面体的顶点数V、面数F及棱数E间有关系 V+F-E=2 这个公式叫欧拉公式。公式描述了简单多面体顶点数、面数、棱数特有的规律。
简单多面体的顶点数V、面数F及棱数E间有关系 V+F-E=2这个公式叫欧拉公式。公式描述了简单多面体顶点数、面数、棱数特有的规律。方法1:(利用几何画板) 逐步减少多面体的棱数,分析V+F-E 先以简单的四面体ABCD为例分析证法。 去掉一个面,使它变为平面图形,四面体顶点数V、棱数V与剩下的面数F1变形后都没有变。因此,要研究V、E和F关系,只需去掉一个面变为平面图形,证V+F1-E=1 (1)去掉一条棱,就减少一个面,V+F1-E不变。依次去掉所有的面,变为“树枝形”。(2)从剩下的树枝形中,每去掉一条棱,就减少一个顶点,V+F1-E不变,直至只剩下一条棱。以上过程V+F1-E不变,V+F1-E=1,所以加上去掉的一个面,V+F-E =2。 对任意的简单多面体,运用这样的方法,都是只剩下一条线段。因此公式对任意简单多面体都是正确的。 方法2:计算多面体各面内角和设多面体顶点数V,面数F,棱数E。剪掉一个面,使它变为平面图形(拉开图),求所有面内角总和∑α一方面,在原图中利用各面求内角总和。 设有F个面,各面的边数为n1,n2,…,nF,各面内角总和为:∑α = [(n1-2)·1800+(n2-2)·1800 +…+(nF-2) ·1800]= (n1+n2+…+nF -2F) ·1800=(2E-2F) ·1800 = (E-F) ·3600 (1)另一方面,在拉开图中利用顶点求内角总和。设剪去的一个面为n边形,其内角和为(n-2)·1800,则所有V个顶点中,有n个顶点在边上,V-n个顶点在中间。中间V-n个顶点处的内角和为(V-n)·3600,边上的n个顶点处的内角和(n-2)·1800。所以,多面体各面的内角总和:∑α = (V-n)·3600+(n-2)·1800+(n-2)·1800 =(V-2)· (2)由(1)(2)得: (E-F) ·3600 =(V-2)·3600 所以 V+F-E= (1)分式: a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b) 当r=0,1时式子的值为0 当r=2时值为1 当r=3时值为a+b+c (2)复数 由e^iθ=cosθ+isinθ,得到: sinθ=(e^iθ-e^-iθ)/2i cosθ=(e^iθ+e^-iθ)/2(3)三角形 设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则: d^2=R^2-2Rr (4)多面体 设v为顶点数,e为棱数,f是面数,则 v-e+f=2-2pp为欧拉示性数,例如 p=0 的多面体叫第零类多面体 p=1 的多面体叫第一类多面体 (5) 多边形设一个二维几何图形的顶点数为V,划分区域数为Ar,一笔画笔数为B,则有:V+Ar-B=1(如:矩形加上两条对角线所组成的图形,V=5,Ar=4,B=8) (6) 欧拉定理在同一个三角形中,它的外心Circumcenter、重心Gravity、九点圆圆心Nine-point-center、垂心Orthocenter共线。其实欧拉公式是有很多的,上面仅是几个常用的。
欧拉 欧拉公式 著名的数学家,瑞士人,大部分时间在俄国和法国度过他17岁获得硕士学位,早年在数学天才贝努里赏识下开始学习数学,毕业后研究数学,是数学史上最高产的作家在世发表论文700多篇,去世后还留下100多篇待发表其论著几乎涉及所有数学分支他首先使用f(x)表示函数,首先用∑表示连加,首先用i表示虚数单位在立体几何中多面体研究中,首先发现并证明欧拉公式 多面体 多面体的定义 若干个平面多边形围成的几何体 (1) (2) (3) ( 4 ) ( 5 ) 多面体的有关概念 多面体的面 棱 顶点 凸多面体 把多面体的任何一个面延伸为平面,如果所有其他各面都在这个平面的同侧,这样的多面体叫做凸多面体 多面体的分类 四多面体 五多面体 六多面体等 多面体 正多面体 每个面都是有相同边数的正多边形,且以每个顶点为其一端都有相同数目的棱的凸多面体,叫正多面体 (1) (2) (3) 正四面体 正六面体 正八面体 正十二面体 正二十面体 多面体 (6) ( 7 ) ( 8 ) 简单多面体 表面经过连续变形能变成一个球面的多面体 ( 5 ) 讨论 问题1: (1)数出下列四个多面体的顶点数V,面数F,棱数E 并填表 (1) (2) (3) 图形编号 顶点数V 面数F 棱数E (1) (2) (3) (4) 规律: V+F-E=2 4 6 4 8 6 12 6 8 12 20 12 30 (欧拉公式) (4) ( 6 ) ( 5 ) 问题1: (2)数出下列多面体的顶点数V,面数F,棱数E 并填表 5 8 5 7 8 12 图形编号 顶点数V 面数F 棱数E (5) (6) V+F-E=2 (欧拉公式) 简单多面体 讨论 问题2:如何证明欧拉公式 A B C D E A1 B1 C1 D1 E1 A B C D E A1 B1 C1 D1 E1 讨论 思考1:多面体的面数是F,顶点数是V,棱数是E,则平面图形中的多边形个数,顶点数,边数分别为 思考2:设多面体的F个面分别是n1,n2, ···,nF边形,各个面的内角总和是多少 (n1-2) ·1800+ (n2-2) ·1800+···+ (nF-2) ·1800=(n1+n2+···+nF-2F)· 1800 思考3: n1+n2+···+nF和多面体的棱数E有什么关系 n1+n2+···+nF =2E F,V,E 问题2:如何证明欧拉公式 讨论 A B C D E A1 B1 C1 D1 E1 A B C D E A1 B1 C1 D1 E1 多边形内角和=(E-F)·3600 思考4:设平面图形中最大多边形(即多边形ABCDE)是m边形,则它和它内部的全体多边形的内角总和是多少 2(m-2) ·1800+(V-m) ·3600=(V-2) ·3600 ∴(E-F)·3600= (V-2) ·3600 问题2:如何证明欧拉公式 讨论 A B C D E A1 B1 C1 D1 E1 A B C D E A1 B1 C1 D1 E1 V+F-E=2 欧拉公式 问题3:欧拉公式的应用 例1 1996年的诺贝尔化学奖授予对发现C60有重大贡献的三位科学家C60是有60 个C原子组成的分子,它结构为简单多面体形状这个多面体有60个顶点,从每个顶点都引出3条棱,各面的形状分别为五边星或六边形两种计算C60分子中形状为五边形和六边形的面各有多少 解:设C60分子中形状为五边形和六边形的面各有x个和 y个 由题意有顶点数V=60,面数=x+y,棱数E= (3×60) 根据欧拉公式,可得 60+(x+y) - (3×60)=2 另一方面,棱数也可由多边形的边数来表示,即 (5x+6y)= (3×60) 由以上两个方程可解出 x=12,y=20 答:C60分子中形状为五边形和六边形的面各有12个和20个 例2,有没有棱数是7 的简单多面体 解:假设有一个简单多面体的棱数E= 根据欧拉公式得 V+F=E+2=9 因为多面体的顶点数V≥4,面数F≥4,所以只有两种情形: V=4,F=5 或 V=5,F= 但是,有4 个顶点的多面体只有4个面,而四面体也只有四个顶点所以假设不成立,没有棱数是7 的简单多面体