涵子笑
学习数学史在数学学习中的作用学习一门学科首先要弄清楚这是一门怎样的学科,《标准》明确提出要使学生“初步了解数学产生与发展的过程,体会数学对人类文明发展的作用”,而现阶段高中学生对数学的看法大都停留在感性的层面上——枯燥、难学。数学的本质特征是什么?当今数学究竟发展到了哪个阶段?在科学中的地位如何?与其它学科有什么联系?这些问题大都不被学生全面了解,而从数学史中可以找到这些问题的答案。 日本数学家藤天宏教授在第九次国际数学教育大会报告中指出,人类历史上有四个数学高峰:第一个是古希腊的演绎数学时期,它代表了作为科学形态的数学的诞生,是人类“理性思维”的第一个重大胜利;第二个是牛顿-莱布尼兹的微积分时期,它为了满足工业革命的需要而产生,在力学、光学、工程技术领域获得巨大成功;第三个是希尔伯特为代表的形式主义公理化时期;第四个是以计算机技术为标志的新数学时期,我们现在就处在这个时期。而数学历史上的三大危机分别是古希腊时期的不可公度量,17、18世纪微积分基础的争论和20世纪初的集合论悖论,它同前三个高峰有着惊人的密切联系,这种联系绝不是偶然,它是数学作为一门追求完美的科学的必然。学生可以从这种联系中发现数学追求的是清晰、准确、严密,不允许有任何杂乱,不允许有任何含糊,这时候学生就很容易认识到数学的三大基本特征——抽象性、严谨性和广泛应用性了。 同时,介绍必要的数学史知识可以使学生在平时的学习中对所学问题的背景产生更加深入的理解,认识到数学绝不是孤立的,它与其他很多学科都关系密切,甚至是很多学科的基础和生长点,对人类文明的发展起着巨大的作用。从数学史上看,数学和天文学一直都关系密切,海王星的发现过程就是一个很好的例子;它与物理学也密不可分,牛顿、笛卡儿等人既是著名的数学家也是著名的物理学家。在我们所处的新数学时期,数学(不仅仅是自然科学)逐步进入社会科学领域,发挥着意想不到的作用,可以说一切高技术的背后都有某种数学技术支持,数学技术已经成为知识经济时代的一个重要特征。这些认识对于一个学习数学十余年的高中生来说是很有必要,也是必不可少的。 一、 学习数学史有利于培养学生正确的数学思维方式 现行的数学教材一般都是经过了反复推敲的,语言十分精练简洁。为了保持了知识的系统性,把教学内容按定义、定理、证明、推论、例题的顺序编排,缺乏自然的思维方式,对数学知识的内涵,以及相应知识的创造过程介绍也偏少。虽利于学生接受知识,但很容易使学生产生数学知识就是先有定义,接着总结出性质、定理,然后用来解决问题的错误观点。所以,在教学与学习的过程中存在着这样一个矛盾:一方面,教育者为了让学生能够更快更好的掌握数学知识,将知识系统化;另一方面,系统化的知识无法让学生了解到知识大都是经过问题、猜想、论证、检验、完善,一步一步成熟起来的。影响了学生正确数学思维方式的形成。 数学史的学习有利于缓解这个矛盾。通过讲解一些有关的数学历史,让学生在学习系统的数学知识的同时,对数学知识的产生过程,有一个比较清晰的认识,从而培养学生正确的数学思维方式。这样的例子很多,比如说微积分的产生:传统的欧式几何的演绎体系是产生不了微积分的,它是牛顿、莱布尼兹在古希腊的“穷竭法”、“求抛物线弓形面积”等思想的启发下为了满足第一次工业革命的需要创造得到的,产生的初期对“无穷小”的定义比较含糊,也不像我们现在看到的这样严密,在数学家们的不断补充、完善下,经过几十年才逐步成熟起来的。 数学史的学习可以引导学生形成一种探索与研究的习惯,去发现和认识在一个问题从产生到解决的过程中,真正创造了些什么,哪些思想、方法代表着该内容相对于以往内容的实质性进步。对这种创造过程的了解,可以使学生体会到一种活的、真正的数学思维过程,有利于学生对一些数学问题形成更深刻的认识,了解数学知识的现实来源和应用,而不是单纯地接受教师传授的知识,从而可以在这种不断学习,不断探索,不断研究的过程中逐步形成正确的数学思维方式。 二、 学习数学史有利于培养学生对数学的兴趣,激发学习数学的动机 动机是激励人、推动人去行动的一种力量,从心理学的观点讲,动机可分为两个部分;人的好奇心、求知欲、兴趣、爱好构成了有利于创造的内部动机;社会责任感构成了有利于创造的外部动机。兴趣是最好的动机。在日本中学生夺取国际IEA调查总分第一名的同时,却发现日本学生不喜欢数学的比例也是第一,这说明他们的好成绩是在社会、家长、学校的压力下获得的。中国的情况如何呢?尚无全面的报道,但河南省新乡市四所中学的高中生学习数学情况的调查发现:“我不喜欢数学,但为了高考,我必须学好数学”的学生占被调查者的比例高达21%,而对数学“很感兴趣”的只有12%。可见目前中学生的学习动机不明确,对数学的兴趣也很不够,这些都极大地影响了学习数学的效果。但这并不是因为数学本身无趣,而是它被我们的教学所忽视了。在数学教育中适当结合数学史有利于培养学生对数学的兴趣,克服动机因素的消极倾向。 数学史中有很多能够培养学生学习兴趣的内容,主要有这几个方面:一是与数学有关的小游戏,例如巧拿火柴棒、幻方、商人过河问题等,它们有很强的可操作性,作为课堂活动或是课后研究都可以达到很好的效果。二是一些历史上的数学名题,例如七桥问题、哥德巴赫猜想等,它们往往有生动的文化背景,也容易引起学生的兴趣。还有一些著名数学家的生平、轶事,比如说一些年轻的数学家成材的故事,《标准》中提到的“从阿贝尔到伽罗瓦”,阿贝尔22岁证明一般五次以上代数方程不存在求根公式,伽罗瓦创建群论的时候只有18岁。还有法国数学家帕斯卡,16岁成为射影几何的奠基人之一,19岁发明原始计算器;德国数学家高斯19岁解决正多边形作图的判定问题,20岁证明代数基本定理,24岁出版影响整个19世纪数论发展、至今仍相当重要的《算术研究》;还有的是许多出生贫穷卑微的数学家通过自己的艰苦努力,最终在的数学研究上有骄人成绩的例子,如19世纪的大几何学家施泰纳出身农家自幼务农,直到14岁还没有学过写字,18岁才正式开始读书,后来靠做私人教师谋生,经过艰苦努力,终于在30岁时在数学上做出重要工作,一举成名。如果在教学中加入这些学生感兴趣又有知识性的内容,消除学生对数学的恐惧感,增加数学的吸引力,数学学习也许就不再是被迫无奈的了。 三、学习数学史为德育教育提供了舞台 在《标准》的要求下,德育教育已经不是像以前那样主要是政治、语文、历史这些学科的事了,数学史内容的加入使数学教育有更强大的德育教育功能,我们从下几个方面来探讨一下。 首先,学习数学史可以对学生进行爱国主义教育。现行的中学教材讲的大都是外国的数学成就,对我国在数学史上的贡献提得很少, 其实中国数学有着光辉的传统,有刘徽、祖冲之、祖暅、杨辉、秦九韶、李冶、朱世杰等一批优秀的数学家,有中国剩余定理、祖暅公理、“割圆术”等具有世界影响的数学成就,对其中很多问题的研究也比国外早很多年。《标准》中“数学史选讲”专题3就是“中国古代数学瑰宝”,提到《九章算术》、“孙子定理”这些有代表意义的中国古代数学成就。 然而,现阶段爱国主义教育又不能只停留在感叹我国古代数学的辉煌上。从明代以后中国数学逐渐落后于西方,20世纪初,中国数学家踏上了学习并赶超西方先进数学的艰巨历程。《标准》中“数学史选讲”专题11—— “中国现代数学的发展”也提到要介绍“现代中国数学家奋发拼搏,赶超世界数学先进水平的光辉历程”。在新时代的要求下,除了增强学生的民族自豪感之外,还应该培养学生的“国际意识”,让学生认识到爱国主义不是体现在“以己之长,说人之短”上,在科学发现上全人类应该相互学习、互相借鉴、共同提高,我们要尊重外国的数学成就,虚心的学习,“洋为中用”。 其次,学习数学史可以引导学生学习数学家的优秀品质。任何一门科学的前进和发展的道路都不是平坦的,无理数的发现,非欧几何的创立,微积分的发现等等这些例子都说明了这一点。数学家们或是坚持真理、不畏权威,或是坚持不懈、努力追求,很多人甚至付出毕生的努力。阿基米德在敌人破城而入危及生命的关头仍沉浸在数学研究之中,为的是“我不能留给后人一条没有证完的定理”。欧拉31岁右眼失明,晚年视力极差最终双目失明,但他仍以坚强的毅力继续研究,他的论文多而且长,以致在他去世之后的10年内,他的论文仍在科学院的院刊上持续发表。对那些在平时学习中遇到稍微繁琐的计算和稍微复杂的证明就打退堂鼓的学生来说,介绍这样一些大数学家在遭遇挫折时又是如何执著追求的故事,对于他们正确看待学习过程中遇到的困难、树立学习数学的信心会产生重要的作用。 最后,学习数学史可以提高学生的美学修养。数学是美的,无数数学家都为这种数学的美所折服。能欣赏美的事物是人的一个基本素质,数学史的学习可以引导学生领悟数学美。很多著名的数学定理、原理都闪现着美学的光辉。例如毕达哥拉斯定理(勾股定理)是初等数学中大家都十分熟悉的一个非常简洁而深刻的定理,有着极为广泛的应用。两千多年来,它激起了无数人对数学的兴趣,意大利著名画家达芬奇、印度国王Bhaskara、美国第20任总统Carfield等都给出过它的证明。1940年,美国数学家卢米斯在所著《毕达哥拉斯命题艺术》的第二版中收集了它的370种证明,充分展现了这个定理的无穷魅力。黄金分割同样十分优美和充满魅力,早在公元前6世纪它就为毕达哥拉斯学派所研究,近代以来人们又惊讶地发现,它与著名的斐波那契数列有着十分密切的内在联系。同时,在感叹和欣赏几何图形的对称美、尺规作图的简单美、体积三角公式的统一美、非欧几何的奇异美等时,可以形成对数学良好的情感体验,数学素养和审美素质也得到了提高,这是德育教育一个新的突破口。 
一、创设教学情景,使“数学教学生活化”。以此激发学生的学习兴趣,调动学生积极性。 创设教学情境是模拟生活,使课堂教学更贴近现实生活,让学生身临其境,如见其人,如闻其声,加强感知,突出重点,突破难点,激发兴趣,开发思维。课堂教学中如何创设教学情境呢?我认为可这样做: 1、运用实例创设情境。如教学循环小数概念时,我给学生讲永远讲不完的故事:“从前,山上有座庙,庙里有个老和尚在给小和尚讲故事:老和尚说:从前山上有座庙……”,通过实例初步感知“不断重复”,再举出自然现象“水→汽→云→水”的循环变化,引出“循环”的概念。 2、运用实物(挂图)创设情境。“圆的认识”教学时,我这样引入:出示一幅颜色鲜艳的用正方形做轮子的自行车,问同学们这自行车漂亮吗?喜不喜欢?为什么?学生们回答:“不喜欢。因为这车虽然漂亮但踩不动。”我把正方形车轮换成椭圆后再问学生喜不喜欢,同学们还是说不喜欢,因为骑这样的自行车,即使是在平坦大路上也象在颠跛不平的路上骑一样,我再把椭圆形车轮换成圆形,学生才满意。 3、动手操作创设情境。在推导平行四边形面积公式时,我让学生准备几个平行四边形,鼓励他们动手操作,通过画、剪、移、拼等方法把一个平行四边形变成我们学过平面图形——长方形,观察拼成的长方形长和宽与平行四边形的底和高有什么关系,然后推导出:因为长方形面积=长×宽,所以平行四边形面积=底×高。平行四边形面积公式是学生在操作时,通过观察、思考概括而来,学生尝试到成功的快乐,不但能掌握知识,更能培养他们的信心和兴趣。 4、运用多媒体创设情境。多媒体教学具有直观、形象、具体、生活化的特点,运用多媒体创设情境,使抽象概念具体化,使难理解的问题容易化。如教学“长方体的认识”时,相对的面完全相同,相对的棱长度相等,我运用电脑平移两个面和相应的棱,使学生看见两个相对的面完全重合,相对的棱完全相等,从而达到具体,直观的效果。 5、 模拟生活创设情境。如教学两步加减的应用题时,要求每个小组的同学可以邀请别组的同学参加,小组人数可以比原来的人数多也可以比原来的少。 第一小组:我这组原来6人,走了2人,来了4人,现在有8人。 问:谁能把第一小组人员变化情况列成式子?6-2+4=8(人) 又问:谁把它编成求“现在有多少人?”的应用题。 第二小组:我这组原来6人,先来了2人,后面又来了3人,现在有11人。…… 通过若干个小组的汇报训练,学生在活动中完成了两步加减的应用题学习。 创设生活化的情景,让学生经历将现实问题抽象成数学模式的过程。 如我在教三年级教学《分数的初步认识》时,我就安排了这样一个游戏:先请上男、女学生各一名站在讲台前,然后,我拿出4个月饼,请其余学生用手指表示每人分到的月饼个数。要求大家仔细听老师要求,然后做。我边分边说:“我有4个月饼,平均分给蔡伟和熊娴,请用手指个数表示每人分到的月饼个数”。学生很快伸出2个手指。我接着问如果只有一个月饼,要平均分给蔡伟和熊娴,请用手指表示每人分到的月饼个数,这时,许多同学都难住了,有的同学伸出弯着的一个手指,问他表示什么意思,回答说,因为每人分到半个月饼,我进一步问:你能用一个数来表示“半个”吗?学生被问住了。此时,一种新的数(分数)的学习,成了学生自身的欲望,这样创设了一个与生活相关的教学情景,就激发了学生学习的兴趣,激起了学生解决问题的欲望。 二、研究生活中的数学,使数学课堂教学生活化。 知识是前人在生活中积累的经验或是揭示出的规律,而教学目标是为了掌握规律及学习发现规律的方法。我们老师如果只是让学生掌握知识,那就是把学生头脑当成了知识的容器,“头脑不是一个要被填满的容器,而是一把需被点燃的火把”。因此,教学中必须让学生了解知识发生的过程,但40分钟毕竟有限,因此我们老师要引导学生善于去捕促、获取、积累生活中的数学知识。 首先,要挖掘教材中生活资源。我以小学数学第十册举三个例。例1:数据的收集,要求学生在上放学途中遇到红灯时,数一数另一方向经过的大客车、小汽车、摩托车各是多少辆?例2:长方体和正方体的认识,要求学生模仿家庭中长方体和正方体用硬纸板动手做一个长方体和正长体。例3:质数和合数,分解质因数,布置作业,想一想班上每个同学的学号是质数还是合数,并把合数分解质因数。 其次,要指导学生观察生活中的教学。让学生观察生活中的数学,既可积累数学知识,更是培养学生学习数学兴趣的最佳途径。低年级学生数一数客厅的资砖、光碟等数量,比一比身高、体重,认一认周围的平面图形和立体图形。中高年级观察数学美,如形体的美、结构美等。 三、设计“数学生活化”的练习,帮助学生去发现生活中的数学问题,并应用所学的数学知识解决实际问题。使学生通过练习感觉到生活中处处有数学,数学来源于生活并应用于生活。 1、在练习过程中创造性地对教材内容进行还原和再创造,将数学练习融合于生活中,就可以使原有的练习为我所用。如我教《求平均数》(第八册)时,练习中有一题是给出一组学生身高数据,算出平均身高,来巩固平均数=总数÷个数的这种方法。我是这样做的:先给出我省十岁儿童的平均身高是140cm,问“我们组的身高水平是在平均身高之上还是不到平均身高呢?”引出要算本组平均身高,再让学生统计本小组8个人的身高,最后通过计算,得出小组的平均身高,与140cm进行比较。同样是计算学生平均身高的练习,但这样的练习设计不但巩固了求平均数的方法,还让学生明白了算平均数的必要性,也体会到生活中需要平均数;还学会了算平均数的这些数据是怎样来的;从平均数中可以获得哪些信息等等。我觉得这样的教学就达到了目标。 2、把生活中的数学原型生动地展现在课堂上,使学生眼中的数学不再是简单的做数学练习,而是富有情感、贴近生活,具有活力的东西。如我在教学长“方体和正方体的表面积”一课的练习拓展中,我设计了这样一个题目,我们的教室由于使用时间过长,比较成旧,需要重新粉刷,泥工师傅要按平方受取工资,总务处胡老师想要大家帮他算一算:我们教室要粉刷的面积是多少?请同学们明天作个答复。接着我让同学们讨论:要算出这个教室的粉刷面,需要找到那些数据,同学们准备怎么办?然后,让大家课后完成,可以合作。通过老师的点拨,激发了学生的自主探究和动手实践,学生兴趣高涨,积极动脑思考,动手实践,真正地把数学知识用到了生活当中。 总之,我们数学教师要引导学生善于思考生活中的数学,加强知识与实际联系;要做生活中的有心人,力争结合教学内容和学生的生活经验以及已有的知识,尽可能地创设一些生动有趣、贴近生活、富有生活气息的情景和练习,使学生切实体验到“生活离不开数学”,“人人身边有数学”,用数学可以解决生活中的实际问题,从而对数学产生亲切感,和浓厚的学习兴趣,增强学生对数学知识的应用意识,培养学生的自主创新能力和解决问题的能力。我对“数学教学生活化”的点滴尝试 数学中的测量在现实生活中的应用
1超市中的数字问题随着城市的发展和人民生活水平的日益提高,超市走进了人们的生活,他们给我们的生活带来了许多的方便,我们的生活方式也因超市的“闯入”受到了一定的影响。如今平望的经济高速发展,超市接二连三地开张。但超市发展之路是漫长的,超市在经营发展中又受哪些方面的影响呢?为此,我们初二(5)班研究性学习小组决定对平望的四大超市(华润超市,华联超市,世纪华联超市,葡萄园超市)做一次调查一、对影响平望超市经营发展的因素的调查与分析1、个人喜好喜好经常能影响一个人的思想,驱使一个人去做些事情,当然,包括让人不由自主地去哪家超市咯,而且平望的面积不算很大,人口有限,四大超市竞争激烈,超市能够受到广大消费者的欢迎是超市继续经营发展的重要条件。这也是我们关注这个问题的原因。以下是我们对这个问题做的一份调查(调查问卷附后),结果如 你最常去的超市是( )A 华润 B 华联 C 世纪华联 D 葡萄园超市从调查我们看出,华润超市受欢迎程度最高,华联次之,其它两个超市无过大差异。2、商品质量和地理位置众所周知,对超市发展影响最大的莫过于商品质量和地理位置。超市商品质量的好坏,能够直接影响消费者的购物欲。一个黄金地段往往是商家争取的重点,地理因素包括通达度,进出是否方便,能突出超市的存在,还有安全性等。这四大超市相距并不是很远,那么,地理位置对它们是否有影响呢?为此,我们特在问卷调查中列入了此项内容,并把它与其它因数进行了对比。结果如下:你常去该超市(你最喜欢的超市)的原因是()A 价格便宜 B 离家较近 C 商品质量好 D 服务态度好 E 其它有24%的人选择了B:离家较近,18%的人选择了A:价格便宜,20%的人选择了C:商品质量好,16%的人选择D:服务态度好,还有22%的人认为是其它原因,例如个人喜欢好。可见,人们对消费地点的选择各有不同。数字显示,超市的选址对消费者而言至关重要。因此分布在居民区的超市较受欢迎。“顾客就是上帝”,每个人都希望买到物美价廉的商品,而且如今的竞争已不是简单的价格战了,完全是商品质量的支撑。我们也坚信好的超市在商品质量和服务态度方面是不会懈怠的。 超市的经营理念一个超市的经营理念是一个超市对待顾客的宗旨,只有超市把顾客所想的摆在第一位,凡事都以顾客为中心,人们才会想去超市消费,那么超市便会长长久久。所以我们特别对此做了问卷调查。你认为超市应把什么放在第一位 ( )A.价格 B。质量 C。服务态度 D。商品种类 E。其它结果分析:经调查,多数人把质量放在第一位,说明产品质量对超市经营的影响是很大的。一个超市经营状况的好坏直接取决于商品与服务态度的高低,其中,质量占的比重较大,服务态度次之,这说明永安人民此时钞票的拥有量,正处于一个舒适的状态,而超市的物价水平与之正相适应,暂时达到一个双赢的局面,超市消费水平稳定超市的工作效率 当今的社会是跑在商业铁轨上的高速列车,任何效率的停滞,都会影响它的运行,当然,超市作为人们生活中重要的活动场所,在社会生活中扮演的台下的主角,它的效率自然成为人们选择超市的重要指标。所以我们设此问题,以考察超市效率在人们心中的比重大小。你会对效率低的超市产生反感吗 ? ( ) A. 会 B 不会 C无所谓结果分析: 95%的人选择了A,在这个信息技术发达的社会,人们无论做什么事都讲求高效率,少时间,好享受,较差的服务对于消费者来说是对自己利益的损害,对商家而言既是不负责任的表现也是对自身形象的损害,更对今后的发展带来不利影响。消费者希望超市的服务能够一体化,更周到,无论是服务的设施还是售后服务都尽力而为,实事求是。二、超市对人民生活的影响 在超市里,你常常会有感于超市里不减的人气,超市成了逛街的好去处,从另一个侧面可以看出平望是一个生活满足而安逸的好地方,大家都在逛超市了。超市里那么多东西,怎么会没有一件你满意的商品?于是,钱就这样不知不觉从人们的口袋里一点一点的流走,无形中带动了消费的发展了。需多谈的,尤其是大型的超市对工作人员数量的要求是巨大的,无疑解决了很大的就业压力,这也是为什么政府对超市经营大力扶持的一个重要原因。但毕竟这类员工从事的都是体力类的劳动,报酬不高,但尚能维持生计,其中不乏初入社会的青年。超市为他们提供了一个基本的生存工作的岗位,每个人都有机会通过自己的努力提高自己的待遇。但这种机遇依然是有限的,毕竟从事零售服务是一件烦琐乏味的事情,故这类员工的心态也可以作为一个值得探讨的问题,更何况他们也是超市的一块招牌,他们工作的好坏,热情与否有时就是超市与顾客间交流的窗口。研究消费心理,少不了对销售心理的探访。有时一个销售人员的一个微笑,一段让人心动的产品介绍会让人有一种购买的蠢蠢欲动,其实有时这种销售人员的素质正是超市的一份无形的品 永安超市的发展模式需改善三、对平望超市经营的建议从宏观上看:平望现在超市发展的关键,需从价格制胜的竞争观念向集价格、文化、服务、品牌等多种因素的复合型竞争理念过渡 1 、超市类型的多元化,在平望, 每个超市里的货物品种,价格,布局,氛围都应各有千秋。不能所有超市一个样,那样怎么会有吸引力呢?在平望,可以发展一些其它类型的超市,如农业超市,里面主要都是农业用具,机械等等呀,必竟平望还是一个农业城市为基础。2、超市分布区域的边缘化,何必一定要挤在市中心,可以到一些城乡结合部呀,现在的平望人民已经在提高进超市购买东西的习惯了,等到大家都习惯了,那些街道商铺可都要关门啦!在厦门的人都知道,厦门的那些大超市进来以后,现在人们一买东西都是进大超市,除了有时零星的购买,当然只能是在社区里的小卖部了。3、超市的特色(或者说是文化,或者说吸引人的地方),像在大城市里的一些超市,每天都有几种特价商品,这些商品平时是不打折的,只有轮到刚好的日子才有,而每个月超市都会将下个月要打折的商品日期提前公布,甚至将宣传单寄给每一个持会卡的人员。从微观上来看: 超市应该改进寄包的设施,超市的服务态度也应该有所改善,超市需要多增设几台收营台,超市的卫生也应做得更好。总结:我们希望通过这次的活动,可以对生活中的变化有所了解,激发对生活的热爱,对知识的不断追求,对实践能力有一个提高,甚至能对超市的经营发展有一定的帮助。 4古代数学发展史—宋元数学: 宋元数学是中国数学发展的高峰。 北宋王朝统一中国后,农业、手工业、商业迅速繁荣,科学技术突飞猛进。从公元十一世纪到十四世纪〔宋、元两代〕,筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期。这一时期出现了一批著名的数学家和数学著作,列举如下:贾宪的《黄帝九章算法细草》〔11世纪中叶〕,刘益的《议古根源》〔12世纪中叶〕,秦九韶的《数书九章》〔1247〕,李冶的《测圆海镜》〔1248〕和《益古演段》〔1259〕,杨辉的《详解九章算法》〔1261〕、《日用算法》〔1262〕和《杨辉算法》〔1274-1275〕,朱世杰的《算学启蒙》〔1299〕和《四元玉鉴》〔1303〕等等。 宋元数学在很多领域都达到了中国古代数学,也是当时世界数学的巅峰。其中主要的工作有: 公元1050年左右,北宋贾宪(生卒年代不详)在《黄帝九章算法细草》中创造了开任意高次幂的“增乘开方法”,公元1819年英国人霍纳(william george horner)才得出同样的方法。贾宪还列出了二项式定理系数表,欧洲到十七世纪才出现类似的“巴斯加三角”。(《黄帝九章算法细草》已佚) 公元1088—1095年间,北宋沈括从“酒家积罂”数与“层坛”体积等生产实践问题提出了“隙积术”,开始对高阶等差级数的求和进行研究,并创立了正确的求和公式。沈括还提出“会圆术”,得出了我国古代数学史上第一个求弧长的近似公式。他还运用运筹思想分析和研究了后勤供粮与运兵进退的关系等问题。 公元1247年,南宋秦九韶在《数书九章》中推广了增乘开方法,叙述了高次方程的数值解法,他列举了二十多个来自实践的高次方程的解法,最高为十次方程。欧洲到十六世纪意大利人菲尔洛(scipio del ferro)才提出三次方程的解法。秦九韶还系统地研究了一次同余式理论。 公元1248年,李冶(李治,公元1192一1279年)著的《测圆海镜》是第一部系统论述“天元术”(一元高次方程)的著作,这在数学史上是一项杰出的成果。在《测圆海镜?序》中,李冶批判了轻视科学实践,以数学为“九九贱技”、“玩物丧志”等谬论。 公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。 公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(etienne bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(james gregory)和公元1676一1678年间牛顿(issac newton)才提出内插法的一般公式。 公元十四世纪我国人民已使用珠算盘。在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具。 另外,其它成就包括勾股形解法新的发展、解球面直角三角形的研究、纵横图(幻方)的研究、小数(十进分数)具体的应用、珠算的出现等等。 这一时期民间数学教育也有一定的发展,以及中国和伊斯兰国家之间的数学知识的交流也得到了发展。
什么是数学?这是任何一个数学教育工作者都应认真思考的问题。只有对数学的本质特征有比较清晰的认识,才能在数学教育研究中把握正确的方向 1 数学,其英文是mathematics,这是一个复数名词,“数学曾经是四门学科:算术、几何、天文学和音乐,处于一种比语法、修辞和辩证法这三门学科更高的地位。”自古以来,多数人把数学看成是一种知识体系,是经过严密的逻辑推理而形成的系统化的理论知识总和,它既反映了人们对“现实世界的空间形式和数量关系”的认识,又反映了人们对“可能的量的关系和形式”的认识。数学既可以来自现实世界的直接抽象,也可以来自人类思维的能动创造。 2从人类社会的发展史看,人们对数学本质特征的认识在不断变化和深化。“数学的根源在于普通的常识,最显著的例子是非负整数。"欧几里德的算术来源于普通常识中的非负整数,而且直到19世纪中叶,对于数的科学探索还停留在普通的常识,”另一个例子是几何中的相似性,“在个体发展中几何学甚至先于算术”,其“最早的征兆之一是相似性的知识,”相似性知识被发现得如此之早,“就象是大生的。”因此,19世纪以前,人们普遍认为数学是一门自然科学、经验科学,因为那时的数学与现实之间的联系非常密切,随着数学研究的不断深入,从19世纪中叶以后,数学是一门演绎科学的观点逐渐占据主导地位,这种观点在布尔巴基学派的研究中得到发展,他们认为数学是研究结构的科学,一切数学都建立在代数结构、序结构和拓扑结构这三种母结构之上。与这种观点相对应,从古希腊的柏拉图开始,许多人认为数学是研究模式的学问,数学家怀特海(A N Whiiehead,186----1947)在《数学与善》中说,“数学的本质特征就是:在从模式化的个体作抽象的过程中对模式进行研究,”数学对于理解模式和分析模式之间的关系,是最强有力的技术。”1931年,歌德尔(K,G0de1,1978)不完全性定理的证明,宣告了公理化逻辑演绎系统中存在的缺憾,这样,人们又想到了数学是经验科学的观点,著名数学家冯•诺伊曼就认为,数学兼有演绎科学和经验科学两种特性。 3对于上述关于数学本质特征的看法,我们应当以历史的眼光来分析,实际上,对数本质特征的认识是随数学的发展而发展的。由于数学源于分配物品、计算时间、丈量土地和容积等实践,因而这时的数学对象(作为抽象思维的产物)与客观实在是非常接近的,人们能够很容易地找到数学概念的现实原型,这样,人们自然地认为数学是一种经验科学;随着数学研究的深入,非欧几何、抽象代数和集合论等的产生,特别是现代数学向抽象、多元、高维发展,人们的注意力集中在这些抽象对象上,数学与现实之间的距离越来越远,而且数学证明(作为一种演绎推理)在数学研究中占据了重要地位,因此,出现了认为数学是人类思维的自由创造物,是研究量的关系的科学,是研究抽象结构的理论,是关于模式的学问,等等观点。这些认识,既反映了人们对数学理解的深化,也是人们从不同侧面对数学进行认识的结果。正如有人所说的,“恩格斯的关于数学是研究现实世界的数量关系和空间形式的提法与布尔巴基的结构观点是不矛盾的,前者反映了数学的来源,后者反映了现代数学的水平,现代数学是一座由一系列抽象结构建成的大厦。”而关于数学是研究模式的学问的说法,则是从数学的抽象过程和抽象水平的角度对数学本质特征的阐释,另外,从思想根源上来看,人们之所以把数学看成是演绎科学、研究结构的科学,是基于人类对数学推理的必然性、准确性的那种与生俱来的信念,是对人类自身理性的能力、根源和力量的信心的集中体现,因此人们认为,发展数学理论的这套方法,即从不证自明的公理出发进行演绎推理,是绝对可靠的,也即如果公理是真的,那么由它演绎出来的结论也一定是真的,通过应用这些看起来清晰、正确、完美的逻辑,数学家们得出的结论显然是毋庸置疑的、无可辩驳的。 4事实上,上述对数学本质特征的认识是从数学的来源、存在方式、抽象水平等方面进行的,并且主要是从数学研究的结果来看数学的本质特征的。显然,结果(作为一种理论的演绎体系)并不能反映数学的全貌,组成数学整体的另一个非常重要的方面是数学研究的过程,而且从总体上来说,数学是一个动态的过程,是一个“思维的实验过程”,是数学真理的抽象概括过程。逻辑演绎体系则是这个过程的一种自然结果。在数学研究的过程中,数学对象的丰富、生动且富于变化的一面才得以充分展示。波利亚(G Poliva,1888一1985)认为,“数学有两个侧面,它是欧几里德式的严谨科学,但也是别的什么东西。由欧几里德方法提出来的数学看来象是一门系统的演绎科学,但在创造过程中的数学看来却像是一门实验性的归纳科学。”弗赖登塔尔说,“数学是一种相当特殊的活动,这种观点“是区别于数学作为印在书上和铭,记在脑子里的东西。”他认为,数学家或者数学教科书喜欢把数学表示成“一种组织得很好的状态,”也即“数学的形式”是数学家将数学(活动)内容经过自己的组织(活动)而形成的;但对大多数人来说,他们是把数学当成一种工具,他们不能没有数学是因为他们需要应用数学,这就是,对于大众来说,是要通过数学的形式来学习数学的内容,从而学会相应的(应用数学的)活动。这大概就是弗赖登塔尔所说的“数学是在内容和形式的互相影响之中的一种发现和组织的活动”的含义。菲茨拜因(Efraim Fischbein)说,“数学家的理想是要获得严谨的、条理清楚的、具有逻辑结构的知识实体,这一事实并不排除必须将数学看成是个创造性过程:数学本质上是人类活动,数学是由人类发明的,”数学活动由形式的、算法的与直觉的等三个基本成分之间的相互作用构成。库朗和罗宾逊(Courani Robbins)也说,“数学是人类意志的表达,反映积极的意愿、深思熟虑的推理,以及精美而完善的愿望,它的基本要素是逻辑与直觉、分析与构造、一般性与个别性。虽然不同的传统可能强调不同的侧面,但只有这些对立势力的相互作用,以及为它们的综合所作的奋斗,才构成数学科学的生命、效用与高度的价值。” 5另外,对数学还有一些更加广义的理解。如,有人认为,“数学是一种文化体系”,“数学是一种语言”,数学活动是社会性的,它是在人类文明发展的历史进程中,人类认识自然、适应和改造自然、完善自我与社会的一种高度智慧的结晶。数学对人类的思维方式产生了关键性的影响.也有人认为,数学是一门艺术,“和把数学看作一门学科相比,我几乎更喜欢把它看作一门艺术,因为数学家在理性世界指导下(虽然不是控制下)所表现出的经久的创造性活动,具有和艺术家的,例如画家的活动相似之处,这是真实的而并非臆造的。数学家的严格的演绎推理在这里可以比作专门注技巧。就像一个人若不具备一定量的技能就不能成为画家一样,不具备一定水平的精确推理能力就不能成为数学家,这些品质是最基本的,……,它与其它一些要微妙得多的品质共同构成一个优秀的艺术家或优秀的数学家的素质,其中最主要的一条在两种情况下都是想象力。”“数学是推理的音乐,”而“音乐是形象的数学”.这是从数学研究的过程和数学家应具备的品质来论述数学的本质,还有人把数学看成是一种对待事物的基本态度和方法,一种精神和观念,即数学精神、数学观念和态度。尼斯(Mogens Niss)等在《社会中的数学》一文中认为,数学是一门学科,“在认识论的意义上它是一门科学,目标是要建立、描述和理解某些领域中的对象、现象、关系和机制等。如果这个领域是由我们通常认为的数学实体所构成的,数学就扮演着纯粹科学的角色。在这种情况下,数学以内在的自我发展和自我理解为目标,独立于外部世界,…,另一方面,如果所考虑的领域存在于数学之外,…,数学就起着用科学的作用…•,数学的这两个侧面之间的差异并非数学内容本身的问题,而是人们所关注的焦点不同。无论是纯粹的还是应用的,作为科学的数学有助于产生知识和洞察力。数学也是一个工具、产品以及过程构成的系统,它有助于我们作出与掌握数学以外的实践领域有关的决定和行动…•,数学是美学的一个领域,能为许多醉心其中的人们提供对美感、愉悦和激动的体验…•,作为一门学科,数学的传播和发展都要求它能被新一代的人们所掌握。数学的学习不会同时而自动地进行,需要靠人来传授,所以,数学也是我们社会的教育体系中的一个教学科目.” 从上所述可以看出,人们是从数学内部(又从数学的内容、表现形式及研究过程等几个角度)。数学与社会的关系、数学与其它学科的关系、数学与人的发展的关系等几个方面来讨论数学的性质的。它们都从一个侧面反映了数学的本质特征,为我们全面认识数学的性质提供 不少同学对数学总这有一点畏惧感,对数学好的人有一种敬佩感。自己对数学总有一点信心不足,拿到一个新课本,一翻,十分庆幸,好在数学公式不多,如果拿到一本书,中间数学推导公式多,就十分沮丧,甚至想回避。 大家都不是搞数学专业的,为什么非要讲一讲对数学的再认识、反复强调要学好数学?如何提高数学素养呢?我想,作为一个现代大学生,数学是回避不了的。华罗庚在五十年代就说过:“宇宙之大、粒子之微、光箭之速、生物之迷、日用之繁,无处不用数学”。到了今天这个信息时代,可以说每一项高新技术的背后都有着极其抽象的数学,高新技术本质上就是数学技术。我们想有所作为,要想取得突出的成就,必要的数学知识,较好的数学素养,较高的数学思维是必须的,请注意我这里用了三个不同的定语,要求是逐步升高的。而且你们已不再是中学生,不是爸爸妈妈要送你读书了,你们已进入人生悟性期,自觉的理解意识正在升起,有的同学甚至对科研、创造、创新已跃跃欲试了,这很好。从课堂和书本里学来的只能是知识,是外来信息,人们最终需要开发和建立的是自己的意识和悟性,当然知识也可以促进意识和悟性的迅速提高。在这个人生的春天季节里,我来和你们一起对数学整体性地温习一次,鸟瞰一次,相信对你们是大有好处的。 一、 从数学与其它学科的关系来看数学 就从数学的外部来论说这个问题。 1、 数学是一种语言,是一种科学的共同语言,若没有数学语言,宇宙就是不可描述的,因而也就是永远是无法理解的。任何一门科学只有使用了数学,才成其为一门科学,否则就是不完善与不成熟的。社会在进步,它的数学化程度也正在不断提高,数学语言已成为人类社会中交流和贮存信息的重要手段,宇宙和人类社会就是用数学语言写成的一本大书。 2、 培根(Bacon)说:“数学是打开科学大门的钥匙”。忽视数学必将伤害所有的知识,因为忽视数学的人是无法了解任何其他科学乃至世界上任何其他事物的。几千年来,凡是有意义的科学理论与实践成就,无一例外地借助于数学的力量。例如,没有微积分就谈不上力学和现代科学技术,没有麦克斯威尔方程就没有电波理论,伦琴因发现X射线于1901成为诺贝尔的第一位获奖人,记者问他需要什么时,他回答:“第一是数学,第二是数学,第三还是数学。” 3、 数学是一种工具,一种思维的工具。自然哲学认为:任何事物都是量和质的统一体,数学就是研究量的科学,它不断地发现、总结和积累了很多人类对量的方面的规律,这些都是人们认识世界的有力工具。这里举两个例子:一个是自然科学的,一个是社会科学的。我们企图找到一个不经手术就可以准确确定人体内的器官位置、密度和三维形状的方法,可惜借助X射线只能绘出二维信息图。这个问题难倒了工程师很多年,后来遇到数学家的工作,即Radon变换,考尔麦克(Cormack)把X射线从许多不同角度照射人体,再运用计算机进行数学变换,导致CT数据透视仪的诞生,获得了1979年的诺贝尔医学奖。现在这一方法进一步推广到核磁共振领域,使图像分辨率更高。从本质上说,这两项技术只不过是,先大量测量一维的物理量,再用数学技巧来重构三维图像而已。 4、 数学是一门艺术,一门创造性艺术。美是艺术的一种追求,美也是数学中一种公认的评价标准。数学的美体现在和谐性、对称性、简洁性,这三性上。数学家不断地追求美好的新概念、新方法、新结论,因此数学是创造性艺术。人们掌握了数学,可以陶冶人的美感,培养理性的审美能力,一个人数学造诣越深,越是拥有一种直觉力,这种直觉力实际就是理性的洞察力、由美感驱动的选择力,最终成为创造美好新世界的驱动力。 这里突出地谈一谈简洁性。A、数学问题提得简洁。这是因为数学突出了本质的因素,必然是简洁的。例如尺规作图三分角问题。 B、数学语言是精炼的。例如欧拉公式:eix =cosx+isinx.把实数域中看不出有任何联系的指数函数和三角函数在复数域中巧妙地联系在一起。其特例:eiπ+1=0 把0、1、i、e、π五个重要常数简单而巧妙的结合在一起,太神奇了。又如,爱因斯坦把茫茫宇宙中的质能关系,用E=MC2 简单地表达出来,简单得令人拍案叫绝。 C、数学概念是简洁的。数学概念的内涵历经沧桑,千锤百炼,每一次变化都使概念更加清晰和更具一般性。例如函数概念:1673年,莱布尼兹定义:函数就象曲线上的点的坐标那样随点的变化而变动。1821年,柯西定义:对于X的每个值,如果Y有完全确定的值与之对应,则Y叫做X的函数。近代定义:设有A、B是非空的集合,F是A到B的一个对应法则,则A到B的F映射:A→B称为A到B上的函数。一步一步更简洁、更具一般性。 D、数学证明是简洁的。数学的目的就是尽可能用简单而基本的词汇尽可能地解释世界。因此,如果我们积累的经验要一代一代传下去的话,就必须不断地努力把它们加以简化和统一。 二、 从数学自身的研究对象来看数学 就是从数学内部来看数学。 恩格斯说:数学是现实世界中的空间形式与数量关系。数学就是研究数量、形状和他们之间关系的科学,这是数学的三大领域。当前数学还在发展,目前已经发展成为包括一百多个分枝的庞大系统。数学已经不是原来人们头脑中仅仅是数和形,仅仅是陈景润的概念了。随着计算机的发明和技术迅速提高,数学学科也进入了新的黄金时代。数学包括三个方面,模式、结构和模拟现实世界。它不光是理论,也是能力,是文化,是素质。 1、 数学发生图数学可分为五大学科:纯粹(基础)数学、应用数学、计算数学、运筹与控制、概率论与数理统计。 应用数学则以以上数学为综合理论基础,可分为:价值数学、运筹学、数理统计学、系统科学、决策论等。目前又发展出混沌、小波变换、分形几何等。 2、 算术 人类逐步有了数的概念,由自然数开始。由于人有十个手指,所以多数民族建立了十进位制的自然数表示方法。二十个一组的太多太大,不能一目了然,还要用上脚趾,五个一组又太少,使组数太多,十个一组是比较会让人喜爱的折衷方法。有古巴比仑记数法、希腊记数法、罗马记数法、中国记数法,发展进步了5000年后,印度人第一次发明了零,零加自然数称为为整数,传入伊斯兰世界形成目前通用的阿拉伯数字。计算机的出现又需要二进位制,就是近几十年的事了。 算术运算起步只需要有加法的概念,乘是多次加的简化运算,减是加的逆运算,除是乘的逆运算,这就是四则运算。除法很快导致了分数的出现,以十、百等为分母的除法,简化表达就是小数和循环小数。不是拥有钱而是欠人的钱如何表示,这就出现了负数,以上这些数放在一起,就是有理数,可以表示在一个数轴上。 人们曾经很长时间以为数轴上的数都是有理数,后来有人发现,正方形的边是1,它的对角线长度就无法用有理数表示,用园规在数轴上找到那个对应点就是无理数的点,这是第一次数学危机。1761年德国物理学家和数学家兰伯卢格严格证明了π也是一个无理数,这样把无理数包入之后,有理数与无理数统称为实数,数轴也称之为实数轴。后来人们发现,如果在实数轴上随机的抽取,得到有理数的概率几乎是零,得到无理数的概率几乎是1,无理数比有理数多得多。为什么会如此,因为我们生活的这个客观世界,本来就是无理的多过有理的。 为了解决负数的开平方是什么,16世纪出了虚数i,虚轴与实轴垂直交叉形成一个复平面,数也发展成为由虚部和实部组成的复数。数的概念会不会继续发展,我们试目以待。 3、代数 对实数的运算进入代数学阶段,有“加、减、乘、除、乘方、开方、指数、对数”八则,用符号代表数,列出方程,求解方程成了比算术更有力的武器。这个时期称为初等数学,从5世纪一直到17世纪,大约持续了一千多年。初等数学是常数的数学。对一组数群体性质的研究就导致线性代数。 4、几何 以上是研究数的,在研究形方面也平行的发展着,古希腊的欧几里得用公理化的方法,构建了几何学是最辉煌的成就。二千多年前的平面几何成就已经与目前中学几何教科书几乎一样了。他们还了解了众多曲线的性质,在计算复杂图形的面积时,接近了高等数学。还初步了解到三角函数的值。在几何学方面,后来进一步发展出非欧几何,包括罗巴切夫几何、黎曼几何、图论和拓扑学等分支。 直到17世纪,笛卡尔的工作终于把平行发展的代数与几何联系起来,除建立了平面坐标系之外,还完善了目前通行的符号运算系统。 5、变量数学 变化着的量以及它们间的依赖关系,产生了变量与函数的概念,研究函数的领域叫数学分析,其主要内容是微积分,牛顿由物理力学推动了微积分的产生,莱布尼兹从数学中求曲线多边形的面积出发推动了微积分的发现,两人的工作殊途同归,目前的微积分符号的记法,都是莱布尼兹最先采用的。他们都运用了极限的概念和无穷小的分析方法。 有了微积分,一系列分支出现了,如级数理论、微分方程、偏微分方程、微分几何等等。级数是无穷项数列的求和问题,微分方程是另一类方程,它们的解不是数而是函数,多元的情况下就出现了偏微分概念和偏微分方程。微分几何是关于曲线和曲面的一般理论,将实数分析的方法推广到复数域中就产生了复变函数论。 6、概率论和数理统计 前面涉及的数量,无论是常量还是变量都是确定的量,但自然界中存在大量的随机现象,其中存在很多不确定的、不可预测的量、是具有偶然性的量,这就由赌博中产生了概率论及其统计学等相关分枝。 7、模糊数学 前面涉及的数量,无论是常量还是变量都是“准确”的量,但自然界中存在大量的不准确现象,人为地准确化只能使我们对客观世界的描述变得不准确。“乏晰数学”Fuzzy就是以这种思想观点和方法研究问题的数学。 三、什么是数学素养 数学素养属于认识论和方法论的综合性思维形式,它具有概念化、抽象化、模式化的认识特征。具有数学素养的人善于把数学中的概念结论和处理方法推广应用于认识一切客观事物,具有这样的哲学高度和认识特征。具体说,一个具有“数学素养”的人在他的认识世界和改造世界的活动中,常常表现出以下特点: 1、 在讨论问题时,习惯于强调定义(界定概念),强调问题存在的条件; 2、 在观察问题时,习惯于抓住其中的(函数)关系,在微观(局部)认识基础上进一步做出多因素的全局性(全空间)考虑; 3、 在认识问题时,习惯于将已有的严格的数学概念如对偶、相关、随机、泛涵、非线性、周期性、混沌等等概念广义化,用于认识现实中的问题。比如可以看出价格是商品的对偶,效益是公司的泛涵等等。 更通俗地说,数学素养就是数学家的一种职业习惯,“三句话不离本行”,我们希望把我们的专业搞得更好,更精密更严格,有些这种优秀的职业习惯当然是好事。人的所有修养,有意识的修养比无意识地、仅凭自然增长地修养来得快得多。只要有这样强烈的要求、愿望和意识,坚持下去人人都可以形成较高的数学素养。 一位名家说:真正的数学家应能把他的东西讲给任何人听得懂。因为任何数学形式再复杂,总有它简单的思想实质,因而掌握这种数学思想总是容易的,这一点在大家学习数学时一定要明确。在现代科学中数学能力、数学思维十分重要,这种能力不是表现在死记硬背,不光表现在计算能力,在计算机时代特别表现在建模能力,建模能力的基础就是数学素养。思想比公式更重要,建模比计算更重要。学数学,用数学,对它始终有兴趣,是培养数学素养的好条件、好方法、好场所。希望同学们消除对数学的畏惧感,培养对数学的兴趣,增进学好数学的信心,了解更多的现代数学的概念和思想、提高数学悟性和数学意识、培养数学思维的习惯。 请注意,我们往往只注意到数学的思想方法中严格推理的一面,它属于“演绎”的范畴,其实,数学修养中也有对偶的一面――“归纳”,称之为“合情推理”或“常识推理”,它要求我们培养和运用灵活、猜想和活跃的思维习惯。 下面举一个例子,看看数学素养在其中如何发挥作用。18世纪德国哥德堡有一条河,河中有两个岛,两岸于两岛间架有七座桥。问题是:一个人怎样走才可以不重复的走遍七座桥而回到原地。