期刊问答网 论文发表 期刊发表 期刊问答

毕业论文回归结果不显著

  • 回答数

    3

  • 浏览数

    181

加勒比052
首页 > 期刊问答网 > 期刊问答 > 毕业论文回归结果不显著

3个回答 默认排序1
  • 默认排序
  • 按时间排序

lanyishu

已采纳
看看数据是否出现了错误,可以先认真的核查一遍,看看自己的计算过程是否正确,如果没有错误,那就更换下实验的数据的,把数据修改一下。

毕业论文回归结果不显著

135 评论(11)

fishee6

说明这个变量与因变量本来就不相关。线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y = w'x+e,e为误差服从均值为0的正态分布。 回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。相关含义:线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做线性模型。最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。不太一般的情况,线性回归模型可以是一个中位数或一些其他的给定X的条件下y的条件分布的分位数作为X的线性函数表示。像所有形式的回归分析一样,线性回归也把焦点放在给定X值的y的条件概率分布,而不是X和y的联合概率分布(多元分析领域)。线性回归是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。这是因为线性依赖于其未知参数的模型比非线性依赖于其未知参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。以上内容参考:百度百科-线性回归
158 评论(12)

12qd

说明没有太大的关系回归结果对应的回归关系。回归分析在给定自变量的情况下估计因变量的条件期望——即当自变量固定时因变量的平均值。不太常见的是,焦点集中在因变量的分位数,或给定自变量的因变量的其他位置参数上。在所有情况下,都要估计独立变量的函数,称为回归函数。在回归分析中,利用概率分布来描述回归函数预测周围因变量的变化也是很有意义的。
143 评论(11)

相关问答