期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    4

  • 浏览数

    356

hfutlk
首页 > 期刊问答网 > 期刊问答 > 论文常用的统计方法有哪些

4个回答 默认排序1
  • 默认排序
  • 按时间排序

锦年安好2015

已采纳
科学研究很早就已经从简单的定性分析深入到细致的定量分析,科研工作者要面对大量的数据分析问题,科研数据的统计分析结果直接影响着论文的结果分析。在医学科研写作中,实验设计的方法直接决定了数据采取何种统计学方法,因为每种统计方法都要求数据满足一定的前提和假定,所以论文在实验设计的时候,就要考虑到以后将采取哪种数据统计方法更可靠。医学统计方法的错误千差万别,其中最主要的就是统计方法和实验设计不符,造成数据统计结果不可靠。下面,医刊汇编译列举一些常见的可以避免的问题和错误:打开百度APP,查看更多高清图片一、数据统计分析方法使用错误或不当。医学论文中,最常见的此类错误就是实验设计是多组研究,需要对数据使用方差分析的时候,而作者都采用了两样本的均数检验。二、统计方法阐述不清楚。在同一篇医学论文中,不同数据要采取不同统计处理方法,这就需要作者清楚地描述出每个统计值采用的是何种统计学方法,但在许多使用一种以上数据统计分析方法的医学论文中,作者往往只是简单地把论文采用的数据统计方法进行了整体罗列,并没有对每个数据结果分析分别交代具体的统计方法,这就很难让读者确认某一具体结果作者到底采用的是何种数据分析方法。三、统计表和统计图缺失或者重复。统计表或者统计图可以直观地让读者了解统计结果。一个好的统计表或统计图应该具有独立性,即作者即使不看文章内容,也可从统计表或统计图中推断出正确的实验结果。而一些医学论文只是简单地堆砌了大量的统计数字,缺乏直观的统计图或表;或者虽然也列出了统计表或统计图,但表或图内缺项很多,让读者难以从中提取太多有用的信息。另外,也有作者为了增加文章篇幅,同时列出统计表和统计图,造成不必要的浪费和重复。统计表的优点是详细,便于分析研究各类问题。统计图(尤其是条形统计图)的优点是能够直观反映变量的数量差异。医学论文中对数据统计结果的解释,最常见的两个错误就是过度信赖P值(结果可信程度的一个递减指标)和回避阴性结果。前一个错误的原因是因为一些作者对P值含义理解有误,把数据的统计学意义和研究的临床意义混淆。所以医学研究人员一定要注意不能单纯依靠统计值武断地得出一些结论,一定要把统计结果和临床实践结合在一起,这样才会避免出现类似的错误。至于回避阴性结果,只提供阳性结果,是因为不少作者在研究设计时,难以摆脱的一种单向的思维定式就是主观地先认定自己所预想的某种结果结论。在归纳某种结果原因时,从一个方向的实验就下完美的结论,尤其是如果这个结论可能对实际情形非常有意义时。这样的思维定势过于强调统计差异的显著性,有时会刻意回避报道差异的不显著结果,不思考和探究差异不显著的原因和意义,反而会因此忽视一些重大的科学发现。

论文常用的统计方法有哪些

276 评论(15)

哒哒哒灬啊哒

常用的统计方法:1、计量资料的统计方法:分析计量资料的统计分析方法可分为参数检验法和非参数检验法;2、计数资料的统计方法:计数资料的统计方法主要针对四格表和R×C表利用检验进行分析;3、等级资料的统计方法:等级资料(有序变量)是对性质和类别的等级进行分组,再清点每组观察单位个数所得到的资料。统计资料丰富且错综复杂,要想做到合理选用统计分析方法并非易事。对于同一 个资料,若选择不同的统计分析方法处理,有时其结论是截然不同的。
126 评论(14)

zmc005

感知机 二分类二分类的线性分类模型,也是判别模型。目的是求出把训练数据进行线性划分的分离超平面。感知机是神经网络和支持向量机的基础。学习策略:极小化损失函数。损失函数对应于误分类点到分离超平面的总距离。基于随机梯度下降法对损失函数的最优化算法,有原始形式和对偶形式。K近邻法 K-nearest neighbor, K-NN 多分类和回归是一种分类和回归方法,有监督学习。在训练数据集中找到和新的输入实例最接近的K个实例,这k个实例的多数类别就是这个新实例的类别。三要素:K的选择,距离度量,分类决策规则。实现方法:kd树(二叉树)快速搜索K个最近邻的点。K值选择:反映了对近似误差和估计误差的权衡。交叉验证选择最优的K值,K小,模型复杂,K大,模型简答。朴素贝叶斯法 多分类 用于NLP朴素贝叶斯法是基于贝叶斯定理和特征条件独立假设的分类方法。首先学习输入输出的联合概率分布,然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。后验概率最大等价于0-1损失函数的期望风险最小化。是典型的生成学习方法,由训练数据求出联合概率分布,再求出条件概率分布(后验概率)。概率估计方法是:极大似然估计或者贝叶斯估计。基本假设是条件独立性决策树 decision tree 多分类,回归是一种分类和回归算法。包括三个步骤:特征选择,决策树生成和决策树的修剪,常用算法:ID3,C5,CART逻辑斯地回归和最大熵模型 多分类本质就是给线性回归添加了对数函数它的核心思想是,如果线性回归的结果输出是一个连续值,而值的范围是无法限定的,那我们有没有办法把这个结果值映射为可以帮助我们判断的结果呢。而如果输出结果是 (0,1) 的一个概率值,这个问题就很清楚了。我们在数学上找了一圈,还真就找着这样一个简单的函数了,就是很神奇的sigmoid函数(如下):逻辑回归用于二分类和多分类逻辑斯地分布是S型曲线最大熵模型:熵最大的模型是最好的模型。X服从均匀分布时候,熵最大最大熵模型的学习等价于约束最优化问题。对偶函数的极大化等价于最大熵模型的极大似然估计。模型学习的最优化算法有:改进的迭代尺度法IIS,梯度下降法,牛顿法,或者拟牛顿法支持向量机 二分类线性可分支持向量机利用间隔最大化求最优分离超平面。函数间隔
128 评论(12)

宇内沙鸥

统计方法是指有关收集、整理、分析和解释统计数据,并对其所反映的问题作出一定结论的方法。统计方法是一种从微观结构上来研究物质的宏观性质及其规律的独特的方法。统计方法是适用于所有学科领域的通用数据分析方法,只要有数据的地方就会用到统计方 法。随着人们对定量研究的日益重视,统计方法已被应用到自然科学和社会科学的众多领域,统计学也已发展成为由若干分支学科组成的学科体系。可以说,几乎所有的研究领域都要用到统计方法,比如政府部门、学术研究领域、日常生活中、公司或企业的生产经营管理中都要用到统计学。
83 评论(13)

相关问答