qiuju1999
古罗马的数字相当进步,现在许多老式挂钟上还常常使用。实际上,罗马数字的符号一共只有7个:I(代表1)、V(代表5)、X(代表10)、L(代表50)、C(代表100)、D(代表500)、M(代表1,000)。这7个符号位置上不论怎样变化,它所代表的数字都是不变的。它们按照下列规律组合起来,就能表示任何数: 1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍。如:"III"表示"3";"XXX"表示"30"。 2.右加左减:一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加小数字,如"VI"表示"6","DC"表示"600"。一个代表大数字的符号左边附一个代表小数字的符号,就表示大数字减去小数字的数目,如"IV"表示"4","XL"表示"40","VD"表示"495"。 3.上加横线:在罗马数字上加一横线,表示这个数字的一千倍。如:"XV"表示 "15,000","CLXV"表示"165,000"。 现在世界通用的数码1、2、3、4、5、6、7、8、9、0,人们称之为阿拉伯数字。实际上它们是古代印度人最早使用的。后来阿拉伯人把古希腊的数学融进了自己的数学中去,又把这一简便易写的十进制位值记数法传遍了欧洲,逐渐演变成今天的阿拉伯数字。 随着生产、生活的需要,人们发现,仅仅能表示自然数是远远不行的。如果分配猎获物时,5个人分4件东西,每个人人该得多少呢?于是分数就产生了。中国对分数的研究比欧洲早1400多年!自然数、分数和零,通称为算术数。自然数也称为正整数。 随着社会的发展,人们又发现很多数量具有相反的意义,比如增加和减少、前进和后退、上升和下降、向东和向西。为了表示这样的量,又产生了负数。正整数、负整数和零,统称为整数。如果再加上正分数和负分数,就统称为有理数。有了这些数字表示法,人们计算起来感到方便多了。 
《打折问题》 打折问题是这学期关于分数百分数应用题的一个特殊形式,它应用学生已经学过的“已知一个数的几分之几(百分之几)是多少求这个数?”或者“已经一个数求它的几分之几(百分之几)是多少?”,打折问题把这两种形式的应用题具体化,而且打折问题是学生在日常生活中经常可以遇到的实际问题,它把抽象问题又具体化、实际化,学生学习起来应该会有兴趣,并且有实际的应用,抓住这一点本课的教学重点放在让学生能够在实际生活中灵活运用打折策略,有经济头脑。 本节课教学由学生经常会使用的肯德基快餐店的优惠券导入,出示不同的优惠券让学生比较哪种我们用起来更加便宜,我把优惠券分为两种:一、原价不同,现价相同;二、原价不同、现价不同,但降低的价钱相同。由此学生会分析出不同的情况,第一种现价相同,那么原价越高,表示降低得越多,这是这款优惠券使用者得到的优惠最大。对于第二种情况,现价不同,原价不同,降低的部分相同,对于学生在理解上可能会存在问题,他们无法理解这种怎么比较大小,很多学生会认为这样的话那么优惠程度是相同的,在教学设计上我考虑到了这一点如果学生能够理解那么则由他们来解释,如果不能我便举例:如2元钱的一种笔记本现降价1元,100元的衣服现在也降价1元,下降价格相同,那么它们的降价对于消费者来说是否程度相同呢?这时候学生可以很清楚地明白,它们之间存在着很大的差异,原价低的降价幅度大。由此引出这节课的课题:我们经常用打折来衡量一种商品现价和原价之间的关系,打折也就是现价是原价的百分之几,打折=现价÷原价,课题揭示学生明白了他们之间的关系以及打折的意义。在教学是我在这部分有些过于急,在揭示出课题时,应该让学生在理解上更加深入,说一说自己的理解,互相给大家解释一下,把概念的理解加深。 在学生理解了打折的概念基础上,出示例题,例题根据学生的日常生活中有可能见到的打折问题采用由简到难,讲练结合的方式: 例1:一件商品原价80元,现在搞活动,九折销售,现价多少元? 学生根据对打折的理解,很容易能够得出答案,在学生得出答案的基础上,让学生根据这三个条件,选其中两个任编一道打折应用题,学生在编题的过程中又进一步对打折进行了理解,并且知道了原价、现价、打折三者之间的关系,要求某一问题,需要知道哪两个条件,有助于学生做更难的应用题。在这个编题过程中,我有些着急,其实这是再一次让学生加强概念理解的好机会,捋清三者之间的关系的好时机,应让学生自己总结。 例2:超市酸奶原价4元一盒,现在买二赠一,相当于打几折? 这是日常生活中经常见到的,间接打折问题,由学生先思考,给他们充足的思考时间,让学生在思考的过程中产生疑问,并动脑筋自己解决,大多数学生在这道题的思考中能够发现问题并解决,灵活运用打折=现价÷原价,有少数在独立思考过程中有问题的学生在大家集体交流时,也会明白,这时我再次强调了打折公式的应用灵活性,并且及时出了一道练习题让学生进行练习,对于刚刚有问题的学生是一次在理解的机会,可是在这里我放掉了一个拓展思维的机会,那就是在买几赠几的打折问题中,打折其实和原价没有关系,例如:买三赠一永远是打七五折,买四赠一永远是打八折,这是一个固定的规律,可由于我的粗心没有给与学生引导,这是在以后的教学中需要注意的。 接着我又安排了另外一种打折方式,就是商场反券和反现金,让学生们讨论和分析它们之间的不同,他们在计算打折时的方法,由于这的确是一个难点,对于有的学生的确存在难度,所以安排先讨论,再汇报,老师讲解,再练习的方式,有助于各个层次的学生的理解需要。 在四十分钟的时间里,我带领学生基本上掌握了打折知识,但是由于课前的预计不好,这节课并没有完成所有的课前预备任务,这也是教学上的一个失败之处,没有正确的估计和预测学生的效果。 纵观这节课,我觉得和学生之间的配合很好,但在教学时应由缺乏经验不能完美的应对之处,对于教学上偶然出现的机会不能准确地抓住和把握,在教学设计上也有考虑不周之处,这还需要进一步的练习。
星期天,我和妈妈去商场购物,超市的海报上写着:购物满200元的返还100元代金券。我心里想:"呵呵,满200元的返还100元,那就是原来价钱的一半,挺划算的。" 我给自己选了一套208元的运动服,获得了100元的代币券。代币券得在今天用完,于是妈妈又给生病的爷爷买了一个288元的榨汁机,我算了算只要再拿出188元就可以买下这个榨汁机。 买完了东西,在回家的路上,我对妈妈说:"妈妈,今天我们买了这些东西是不是都是打了对折啊?"妈妈笑着说:"傻孩子,不是这样的,等回家后,妈妈算给你看,你就知道了。" 回到家,妈妈对我说:"艺儿,今天我们一共花了多少钱?"我说:"运动服208元,榨汁机188元,一共是396元啊。"妈妈接着又问:"那这些商品原价是多少?"我说:"496元啊。"妈妈说:"好,那也就是说今天我们用396元的钱买了496元的商品,如果要算打了多少折,就看看实际花的钱占商品价钱多少比例,用396 496,你拿计算器算算。"我一按计算器,啊原来是79折。我百思不得其解,后来还是妈妈话让我明白。原来商家规定只有满200元才能返券,所以买榨汁机时188元的部分就不能享受到优惠了。因此,我们享受到的优惠程度和商家所说的相比也是打了折扣。 "买家不如卖家精"这话一点也不假。商家心里早已打好了如意算盘,打折背后隐藏着数学问题,以后我一定要注意了。
例子:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×5=5(千米),5+18=5(千米),5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×5=5(千米),5-18=5(千米),5×2=189(千米)。所以正确答案应该是:45×5=5(千米),5+18=5(千米),5×2=261(千米)和45×5=5(千米),5-18=5(千米),5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。