期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    6

  • 浏览数

    153

请叫我美少年
首页 > 期刊问答网 > 期刊问答 > 二年级数学教学论文范文大全

6个回答 默认排序1
  • 默认排序
  • 按时间排序

冰糖雪梨ya

已采纳
呵呵,5年级学什么数学啊,也太简单了,没啥可写的,还论文。呵呵,你们领导这不难为人吗? 随便找一个,网上很多 把循环小数化成分数的方法,可以用移动循环节的过程来推导,也可以用无限递缩等比数列的求和公式计 算得到。下面我们运用猜想验证的方法来推导。 (一)化纯循环小数为分数 大家都知道:一个有限小数可以化成分母是10、100、1000 ……的分数。那么,一个纯循环小数可以化成 分母是怎样的分数呢?我们先从简单的循环节是一位数字的纯循环小数开始。如:@①、@②……化成分数时 ,它们的分母可以写成几呢? 想一想:可能是10吗?不可能。因为1/10=1〈@①,3/10=3〉@②;可能是8吗?不可能。 因为1/ 8=125〉@①,3/8=375〉@②;那么,可能是几呢?因为1/10〈@①〈1/8,3/10〈@②〈3/8,所以分 母可能是9。 下面我们来验证一下自己的猜想:1/9=1÷9=111……=@①;3/9=1/3=1÷3=333……= @②。 计算结果说明我们的猜想是对的。那么,所有循环节是一位数字的纯循环小数都可以写成分母是9的分数吗 ?让我们根据自己的猜想, 把@③、@④化成分数后再验证一下。 @③=4/9 验证:4/9=4÷9=444…… @④=6/9=2/3 验证:2/3=2÷3=666…… 经过上面的猜想和验证,我们可以得出这样的结论:循环节是一位数字的纯循环小数化成分数时,用一个 循环节组成的数作分子,用9 作分母;然后,能约分的再约分。 循环节是两位数字的纯循环小数怎样化成分数呢?如:@⑤、@⑥……化成分数时,它们的分母又可以写 成多少呢? 想一想:可能是100吗?不可能。因为12/100=12〈@⑤,13/100=13〈@⑥。可能是98吗?不可能。 因为12/98≈1224〉@⑤,13/98≈1327〉@⑥;可能是多少呢?因为12/100〈@⑤〈12/98,13/100〈@⑥ 〈13/98,所以分母可能是99。是否正确,还需验证一下。 12/99=12÷99=121212……=@⑤; 13/99=13÷99=131313……=@⑥。 验证结果说明我们的猜想是正确的。那么,所有循环节是两位数字的纯循环小数都可以写成分母是99的分 数吗?让我们再运用猜想的方法,把@⑦、@⑧化成分数后,验算一下。 @⑦=15/99=5/33,验算:5/33=5÷33=151515…… @⑧=18/99=2/11,验算:2/11=2÷11=181818…… 经过这次猜想和验证,我们可以得出这样的结论:循环节是两位数字的纯循环小数化成分数时,用一个循 环节组成的数作分子,用99作分母;然后,能约分的再约分。 现在,你能推断出循环节是三位数字的纯循环小数化成分数的方法吗? 因为循环节是一位数字的纯循环小数化成分数时,用9作分母, 循环节是两位数字的纯循环小数化成分数 时,用99作分母,所以循环节是三位数字的纯循环小数化成分数时,我们猜想是用999作分母, 分子也是一个 循环节组成的数。让我们再来验证一下,如果这个猜想也是正确的,那么,我们就可以依次推下去了。 附图{图} 实验证明:我们的猜想是完全正确的。照此推下去,循环节是四位数字的纯循环小数化成分数时,就要用 9999作分母了。实践证明也是正确的。所以,纯循环小数化成分数的方法是: 用9、99、999……这样的数作分母,9 的个数与循环节的位数相同;用一个循环节所组成的数作分子;最 后能约分的要约分。 二、化混循环小数为分数 我们已经运用猜想验证的方法研究过怎样化纯循环小数为分数,再用这种方法研究一下怎样化混循环小数 为分数。 还是先从较简单的数入手,如: 附图{图} ……这样循环节只有一位数字的混循环小数化成分数时,分子、分母分别有什么特点呢? 这样想:一个混循环小数有循环部分,还有不循环部分,能否将它改写成一个纯循环小数与一个有限小数 的和,然后再化成分数呢?让我们试试看。 附图{图} 观察以上过程,你能看出循环节只有一位数字的混循环小数化成的分数有什么特点吗?很容易看出:它们 的分母都是由一个9与几个0组成的数。再仔细观察可以发现:0 的个数恰好与不循环部分的数字个数相同。它 们的分子有什么特点呢?不难看出:它们的分子都比不循环部分与第一个循环节所组成的数要小。到底小多少 呢?让我们算一算: (1)21-19=2 (2)543-489=54 (3)696-627=69 细心观察不难看出:分子恰好是一个比不循环部分与第一个循环节所组成的数少一个由不循环部分的数字 所组成的数。这个规律具有普遍性吗?让我们运用以上的规律把 附图{图} 化成分数,验证一下它的正确性。 附图{图} 验证:352/1125=352÷1125=312888…… 验证的结果是完全正确的。那么,循环节是两位数字的混循环小数化成的分数,分子、分母是否也有这样 的规律呢?分子是由一个比小数的不循环部分与第一个循环节所组成的数少一个不循环部分的数字所组成的数 ;分母是由9和0组成的数,0 的个数与不循环部分的数字个数相同,9的个数与一个循环节的数字个数相同。 让我们按照猜想的方法试把 附图{图} 化成分数,然后再验证一下。 附图{图} 实践证明,我们的猜想是正确的。那么,循环节是三位数、四位数……的混循环小数是否也能按照这样的 方法化分数呢?让我们把 附图{图} 化成分数后,再验证一下 附图{图} 验证的结果也是正确的,说明我们的猜想可能是正确的。这个方法也确实是正确的。当然,我们在运用猜 想验证的方法时,并不一定每次的猜想都是正确的。如果不正确,就需要根据具体情况进行修改,然后再验证 ,直至正确为止。 猜想验证的方法是人类探索未知的一种重要方法,很多科学规律的发现,都是先有猜想,而后被不断的验 证、再猜想、再验证才被认识。猜想验证也是一种重要的数学思想方法。我们应在向学生讲解具体知识的同时 ,也要求他们从小就学习运用这种思想方法大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×5=5(千米),5+18=5(千米),5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×5=5(千米),5-18=5(千米),5×2=189(千米)。所以正确答案应该是:45×5=5(千米),5+18=5(千米),5×2=261(千米)和45×5=5(千米),5-18=5(千米),5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。

二年级数学教学论文范文大全

242 评论(10)

hmily1

回答 1、题目要新颖。一个新颖的题目可以给人耳目一新的感觉,而且容易给读者和评审人员留下深刻的印象,比较容易通过和发表,因此在题目的选择和设定上要多花些心思。2、范围要小。既然是小论文,那么选题范围就不要太大了,太大太宽泛的论文一个是容易落入俗套,另外就是如果没有深入研究的话,不容易阐述的清晰透彻,给人言之无物的感觉,不如选个小一点的课题深入的说明,这样效果会更好。3、见解独特。对于你所选择的课题你要有自己独特的见解,与众不同的见解是你论文的核心和亮点,如果没有这些那么这篇论文的质量无疑是值得质疑的,很难引起读者的注意和评审的好感。4、系统性强。因为数学是一门以逻辑推理为主的学科,因此你的论述要有很好的系统性,从前到后一步步进行推理,这样的论文即使在文采方面并不出众,也是容易因其逻辑性和系统性而成为一篇好的论文的。
300 评论(14)

126wyc

回答 用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:勾2+股2=弦2亦即:a2+b2=c2勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前11XX年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:弦=(勾2+股2)(1/2)即:c=(a2+b2)(1/2)定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方;即直角三角形两直角边的平方和等于斜边的平方。如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是3*3+4*4=,x=5。那么这个三角形是直角三角形。(称勾股定理的逆定理) 提问 一个小正方体的棱是三厘米现在有20个小正方体这样的小正方体把它搭成一个大的长方体这个长方体的表面积是多少? 答案是什么? 回答 3×2+(20×3)×3×4=6+720=726 提问 能讲一下意思? 为什么这样做? 回答 3×3×2上下底正方形面积 20×3×3侧边面积 720+18=738 提问 谢谢老师! 再见 再见 更多10条 
90 评论(13)

lovejllmy

在课堂中,由我们去担任学习的主角,让我们真正成为学习的主人,是我们每个小学生的共同心愿。一、 数学课堂上我们想操做、爱操做数学活动课是我们都爱上的课,在老师的指导下,我们分成小组,通过自己动手去测量、拼凑、剪切、计算,去探索发现的规律、掌握数学知识。这样,即培养了我们的动手能力,又提高了我们的思维能力,而且让我们初步尝到了数学家研究问题成功时的滋味,使我们对数学的学习兴趣倍增。例如,我们上《平行四边形面积得计算》这节课时,老师让我们分成几个小组,发一些平行四边形的小纸片,让同学们互相讨论,怎样使一个平行四边形经过剪贴、拼凑变成一个我们已经会计算面积的图形呢?大家七嘴八舌的讨论开了,有的同学发现可以用剪刀沿着平行四边形的高,把它剪成一个直角三角形和一个直角梯形,然后可以把它们拼成一个长方形;一些同学又发现还可以从平行四边形的任意一条高剪开,就得到两个直角梯形,依然可以拼成一个同样大小的长方形。同学们通过观察、思考,认识到拼成的长方形的“长”和“宽”,分别就是原来平行四边形的“底”和“高”。由此,大家终于自己找到了平行四边形面积公式为:S=ah。二、数学课堂上我们想发言、爱发言  那是一节活动公开课,哇!后面的听课老师一大片,我们真有点紧张呢!上课前我就想即使我有了自己的想法,也不一定能表达出来。老师好像看透了我们的心思,老师幽默地说:“我们现在玩一个“过期”的游戏”,我们正纳闷呢,老师又说“过期”的游戏就是“过7”的游戏,遇到含有7的或者7的倍数都要说“过”。哦,逗得我们哈哈直笑,在非常轻松的氛围中完成了游戏,这时候我发现同学们不愿说话的也开始活跃了,原来不敢说话的也打消了顾虑。我还记得那节课老师讲的是 “时、分的认识”,学生对“时针指在2、3之间,分针指在11”时,是2时55分还是3时55分出现了不同意见,展开了被一场别开生面的争执。这时老师让我们结合自己手中钟表模型分组讨论、探索,最终得出了统一答案。
145 评论(12)

娟留念

二年级数学教学论文:激发学生课堂学习兴趣进入21世纪以来,我国基础教育课程改革与更新正在轰轰烈烈地展开。新课标的推出,要求我们更新观念,与改革同步。如何组织教学,怎样做才能体现“学生是数学学习的主人”,我们的角色转变为“数学学习的组织者,引导者与合作者”,怎样通过数学教学培养学生的创新意识和实践能力,成为这个学期研究的重要课题。二年级第一学期数学,在整个小学阶段占一定的重要位置。本学期数学教学的指导思想是贯彻党和国家的教育方针和新课标的精神,落实对儿童少年的素质教育,促进学生的全面发展。初步培养学生的抽象、概括能力;分析、综合能力;判断、推理能力和思维的灵活性、敏捷性等。着眼于发展学生数学能力,通过让学生多了解数学知识的来源和用途,培养学生良好的行为习惯。因此,在教学过程中应着重抓好以下几点:一、激发学生的学习兴趣兴趣,是一个人积极完成一件事物的重要前提和条件。二年级小学生年龄还比较小,稳定性较差,注意力容易分散。要改变这种现象,必须使小学生对数学课产生浓厚的兴趣,有了对学习的兴趣,他们就能全身心地投入学习中。那么,怎样才能使他们产生学习的兴趣呢?首先,“学生是数学学习的主人”。新授课,练习课更加讲究方法。新授课中,我们可以和学生建立平等的地位,象朋友一样讨论教学内容,走进小朋友的心里,使他们消除心理障碍和压力,使“要我学”转变为“我要学”。在练习课上,利用多种多样的练习形式完成练习。可以请小朋友当小老师来判断其他正确;或者通过比赛形式来完成。对于胜出的小组给予红花或星星等作为奖品,这样促进学生。其次,创设问题情境,激发学生兴趣。创设问题情境是在教学中不断提出与新内容有关的能激起学生的好奇心和思考的问题,是激发学生学习的兴趣和求知欲的有效方法,也可以培养学生解决问题能力。我在教学“时间”这部分时,由于这部分知识比较抽象,学生比较难理解,所以我在三个星期前就先告诉学生,三个星期后我们要学习时间,希望同学们多去了解。然后我有意创设一些有关时间的生活中的问题情境让大家接触,结果学生来了兴趣,在学这部分知识时再让学生通过观察、操作、猜测、交流、反思等活动中学习,学生学习的积极性很高,解决相关的问题就容易多了。二、设计符合小学生年龄特点的实践活动。二年级学生掌握的数学知识不算多,接触社会的范围也比较窄。因此,根据学生的实际情况,在教学“方向与位置”这部分时,我让学生通过判断学校的方向,再来判断教室的方向,最后再判断自己的位置方向,这样一次次、一层层地认识,加深对着部分知识的理解。多让他们实践,就能提高他们的实践能力。三、结合基础知识,加强各种能力和良好习惯的培养。在重视学生掌握数学基础知识的同时,也发展他们的智力,培养他们的判断、推理能力。例如:教学乘法口诀时,先引导学生观察找规律,再小组讨论,最后小组汇报得出结论。由于二年级的学生太小了,滋长能力比较差。所以导致教学工作有一定的难度,但我一定会努力认真的总结、反思,虚心求教,不断学习,提高自己。
108 评论(10)

GW威

已上传,如果满意,请点“采纳“,谢谢!
339 评论(15)

相关问答