期刊问答网 论文发表 期刊发表 期刊问答

数学与传统文化论文范文初中

  • 回答数

    4

  • 浏览数

    217

手机用户
首页 > 期刊问答网 > 期刊问答 > 数学与传统文化论文范文初中

4个回答 默认排序1
  • 默认排序
  • 按时间排序

yfz1989

已采纳
数学是一门客观、精确的学科,蕴藏着极其丰富的思想性,中华优秀传统文化博大精深、源远流长,是我们的国粹,是我们炎黄子孙的精神财富,如何将数学与传统文化教育相结合,充分发挥传统文化独特而强大的功能,引导学生在感受、感悟我国丰富的民族数学文化遗产的过程中,同时培养数学文化素养、开发智能?是每一位数学教师都在思考的问题,我们主要做了以下几个方面的尝试:一、走近数学名人运用教材中反映我国历代数学家对数学研究作出巨大贡献的实例教育学生,如:刘徽在对《九章算术》中一些问题的补充证明中,显示了他在多方面的创造性的贡献。他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根。在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法。在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法。他利用割圆术科学地求出了圆周率π≈14的结果。刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作。通过研究还知道了刘徽一生刚直不阿,在任何条件下都敢于发表自己的见解,敢于修正前人的错误。他在研究数学的过程中,不仅重视理论研究,而且也很注意理论联系实际。他的治学精神是大胆、谨慎、认真。他对自己还没有解答的问题,把自己感到困难的地方老老实实地写出来,留待后人去解决。刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人。通过这样对古代数学家、名人的研究,使学生懂得我国不但有灿烂的古代文明,我国人民也富有聪明才智。在原古落后的时代,便有如此伟大的数学家,有如此伟大的数学成就,而今科学这样高度发达,我们若不努力学习,真是愧对古人。从而让学生以他们为榜样,从小树立起为国家富强、为民族振兴而发奋读书、顽强拼搏、积极奉献的责任感。二、搜集数学史料教材中的“你知道吗?”其中多为数学史料,介绍我国古代数学家对数学研究的突出贡献。教师在教学中,适时地介绍一些数学史知识,充分挖掘出教材中蕴含的数学史料并将这些内容与数学课堂教学紧密联系起来,不但能丰富学生的学习内容,还能引起学生学习的主动性,培养学生的民族自豪感和责任感,从而达到向学生进行爱国主义教育的目的。如在学习《圆的周长》时,学生通过实验发现圆的周长总是直径的3倍多一些,这时教师适时引出圆周率,然后向学生介绍,很早以前,人们就开始研究圆周率到底是多少。约2000前,中国的古代数学著作里《周髀算经》中就有“周三径一”的说法,意思是说圆的周长是直径的3倍。约1500年前,中国有一位伟大的数学家和人文学家祖冲之。他计算出圆周率应在3.1415926和3.1415927之间,成为世界上第一个把圆周率的值的计算精确到7位小数的人。他的这项伟大成就比国外数学家得出这样精确数值的时间,至少要早一千年!通过这段话的学习激起学生强烈的民族自豪感。这时再向学生布置一项拓展作业:查阅资料,了解圆周率的历史、古人圆周率的计算方法、圆周率的计算历史、祖冲之的生平及故事等,利用专门时间组织学生汇报交流。在这个过程中,学生不仅了解了我国古代数学家计算圆周率的方法和圆周率的计算历史,更体会到了我们古代数学家的伟大和他们所创造的辉煌的历史成就。再比如学习《圆的认识》,向学生介绍早在两千多年前,我国古代就有对圆的精确记载,墨子是我国伟大的思想家,在他的一部著作中有这样的描述“圆、一中同长也”, 这个发现比西方整整早了1000多年。我国古代对于圆的记载还远不止这些。在《周髀算经》里有这么一句话“圆出于方,方出于矩”。 通过这样的介绍和研究,激起学生强烈的民族自豪感,达到了向学生进行爱国主义教育的目的,从而让学生从小树立起为国家富强、为民族振兴而发奋读书、顽强拼搏、积极奉献的责任感。三、欣赏传统图案我国传统图案种类繁多,内容丰富,它既代表着中华民族的悠久历史,社会的发展进步,也是世界文明艺术宝库中的巨大财富。从那些变幻无穷,淳朴浑厚的传统图案中,我们可以看到各个时代的工艺水平和中华民族一脉相承的文化传统。在数学教材第九册《圆》一单元,展示给学生的有战国时期的外圆内方铜镜、铜钱、玉璧、花瓣状门洞、福建土楼等等一些古代物品图案。在学习之前,教师把全班同学分成五个小组,分别去查找有关资料,每副图案的出处,年代、以及代表的含义或者所蕴含的数学思想。学生积极参与其中,收到了不错的效果。经过对资料的了解和观察,学生发现图案的设计用到了数学知识中的旋转和对称的手法,力求体现完美和谐,追求美好的生活。学生在欣赏精美绝伦图案的同时,感受到中国灿烂的纺织绘画艺术,感受到了数学中的美。四、了解古代测量工具在六年级上册第二单元《位置与方向》,主要通过路线图让学生学会辨认路线图,并会画出路线图。说起辨认方向,学生最先可以想起辨认方向的工具——指南针。作为古代四大发明之一的“指南针”,早已为我们所熟知,但关于“指南针”一些背后的历史,我们的学生却知之甚少。于是,结合本单元内容,教师设计了两项内容:(一)、现在我们认识到的方位名词有:东、南、西、北。那么,古代表示方位的名词又有那些呢?通过调查,学生了解到:古代除了用东南西北等表示地理方位以外,大致还有以下10种方法:1.以阴阳表示、2.以五行表示3、以五色表示4.以四季表示 5.以四兽表示6.以左右表示7.以八卦表示8.以数字表示 9.以天干地支表示10.以星宿表示。关于指南针。1、指南针的历史故事2、指南针的起源3、指南针的发明4、指南针的发展通过这两项内容的了解,大大丰富了学生的知识储备,特别是对古代方位词的认识,以及对指南针的发明、演变过程的研究,大大提高了他们继续探究的兴趣,初步为学生揭开了古代传统的神秘大门。总之,在数学课堂中渗透传统文化教育方法也应是多种多样、丰富多彩的,让传统文化渗透到教学实践中,努力让学生在学习数学的过程中,受到中华传统文化的感染,产生共鸣,体会到传统文化的价值所在,为今后的成长和发展奠定坚实的基础。

数学与传统文化论文范文初中

161 评论(10)

李秋秋秋分

我也正好在做这个作业,不过为什么不能超出初一生的思想和知识??????
204 评论(10)

手机用户

浅谈数学文化中的和合思想和合是我国传统文化的一个重要概念。“和”是平和、和谐、祥和、协调的意思。“合”是合作、对称、结合、统一的意思。和合思想认为,整个物质世界是一个和谐的整体,宇宙、自然、社会、精神各元素都处在一个和谐的优化结构中。而数学文化系统就是一个完美的和谐优化结构。数学文化中的数学发展史、数学哲学思想、数学方法、数学美育等重要内容蕴含着丰富的和合思想。其具体体现是整体系统性、平衡稳定性、有序对称性。一、整体系统性数学公理系统的相容性数学的公理化系统具有相容性、独立性和完备性。在这三项基本要求中,最主要的是相容性。相容性就是不矛盾性或和谐性,是指各公理不能互相抵触,它们推导的真命题也不能互相矛盾,公理系统的相容性是数学系统和谐的基础,也是基本要求。除了数学各分支自身要形成相容的公理系统之外,数学还要求各分支之间互相协调,不能互相抵触。有的系统之间,还形成密切的同构关系,在不同的数学系统之间,相容性是一致的。例如欧氏几何与非欧几何(罗式几何、黎曼几何)中平行公理是互否的命题,可在欧氏几何中构造非欧几何的模型,所以可以这样说只要欧氏几何无矛盾,那么非欧几何也是无矛盾的。数学运算系统的完整性数学的运算法则、运算公式、运算结论都是完整的、准确的。特别是数学的运算语言,它把文字语言、符号语言、图像语言完全融合到一个统一体中,互相印证、互相诠释、互相转化,达到了天衣无缝的完美。当扩充数系时,要建立新的理论和运算拓广原有运算和关系时,要尽量保持原有的运算、关系的一致性,如有不一致,必须作一规定,使新系统与原有系统和谐。数学推理系统的严密性在我们日常的数学活动中,常常用到反证法,在这种方法中,往往不仅要用到系统的公理和定理,而且要用到其他分支的知识。在整个推理过程中要和谐。例如古希腊三大著名问题之一化圆为方,即作一个与给定圆面积相等的正方形。要证明用圆规和直尺不能作出等面积的正方形就需要用到数“=”的超越性。在数学上的等式、解析式中出现“=”是和谐的体现。二、平衡稳定性“和合思想”认为天地自然万物处于平衡、和谐、有序的状态。各个事物、要素互依、互涵、互补,处于全面的、立体的相互作用的过程之中。而数学的平衡稳定性很好地体现了和合思想。数学发展的平衡稳定数学科学与其它学科相比,一个重要的特点就是历史的累积性、发展的平衡稳定性。也就是说重大的数学理论总是在继承和发展原有理论的基础上建立起来的,他们不仅不会推翻原有的理论,而且总是包容原有的理论。比如天文学的“地心说”被“日心说”所代替,物理学中关于光的“粒子说”被“波动说”代替,化学中的“燃素说”被“氧化说”代替等等,而数学从来没有发生过这样的情况。这正如一位数学史家H?汉科尔所说:“在大多数学科里,一代人的建筑为下一代人所拆毁,一个人的创造被另一个人所破坏,唯独数学,每一代人都在古老的大厦上添加一层楼”。数学的这一平衡稳定性,正是数学学科能不断焕发出无限活力和强大生命力根源。数学学习过程的平衡稳定人们对知识的学习过程都含有一定的认知结构。而学生学习数学知识的过程不外乎“同化—顺应—平衡”这样一个相对稳定的过程。同化就是把新的知识纳入已有的认知结构,使原有的知识体系不断得到充实丰富。顺应就是新的知识不能纳入原有的认知结构,就要对原有认知结构进行改造和提高,从而建立新的认知结构。平衡就是同化和顺应后,都有一个巩固阶段,在这一阶段对知识的理解和内化是平衡稳定的。人们对数学知识的学习正式在“同化—顺应—平衡”这样一个循环往复的过程中发展的。数学方法的平衡稳定数学方法是认识数学客体过程中某种有规律的程序和手段,使理论用于实践的中介,各种方法都和谐地存在在数学这个共同体中。比如常用的数学思维方法:观察、分析、综合、抽象、猜想、类比、归纳、演绎;还有常用的数学解题方法:比较方法、结构方法、模型方法、构造方法、化归方法、映射反演法、几何变换法、公理化方法等。这些方法,无论是在初等数学中,还是在高等数学中;无论是在几何学中,还是在代数学中,都在广泛的运用,始终处于平衡稳定状态中,不会因时间、空间、以及学科的变化发生变异。几何变换思想和方法,就是用运动和变化的观点去研究几何对象及其相互关系,探讨图形运动过程中不变的关系、不变量和变化关系、变化量,从中找出规律。在解题过程中,对图形有关部分进行变换,化不规则为规则,化一般为特殊,化不利条件为有利条件。三、有序对称性“凡物必有合”,“合”就是对称、结合、统一。整个世界不仅和谐合理,而且阴阳和合的对称。数学的有序对称美在初等数学中研究的对称性,可以描述的是一个图形、一个式子各个部分的关系,也可以描述两个图形、式子的关系。图形、式子的变换显示着数学中的对称美。图形对称可称为狭义对称,例如中心对称图形、轴对称图形、旋转对称图形是图形位置的一种对称。显示一种对称的美。在许多概念中和方法、命题、公式、法则中也存在对称性,也可称为一种对称。在数学中,许多概念都是一正一反,相辅相成,成对出现的。例如数学运算中加与减、乘与除、乘方与开方、微分与积分等,都可认为是一阴一阳的对称;减一个负数可变成加一个正数,除可以变成乘的运算,所以说它们之间又是统一有序的。在二元运算中通过交换律、结合律、分配律来反映其对称性。数学解题过程的有序结构从文化的角度审视数学解题过程它是数学策略、数学逻辑、数学方法、数学知识、数学技能与程式化的有机结合,是一个有序结构的统一体。比如解方程过程的基本步骤是:去分母、去括号、移项合并、两边同除以未知数的系数。这是一个和谐的有序结构。破坏了这个有序结构,就会发生解题障碍。从思维过程看,它是“观察———联想———转化”这样一个有序过程。观察是联想的基础,在观察中认识所给题目的特征;联想是转化的桥梁,在联想中寻找解题途径;转化是解题的手段,在转化中确定解题方案,从而最终解决问题。数学无论是从整体和局部,形式和内容,还是结果和过程都体现着和合思想的精神和内涵。我们用“和合思想”重新认识数学,发挥数学文化在教学中的教育功能,就能有效地培养学生科学素养和文化素养。参考文献:[1]齐民友数学文化[M]长沙:湖南教育出版社,[2]张维忠数学文化与数学课程[M]上海:上海教育出版社,[3]郑毓信数学文化学[M]成都:四川教育出版社,[4]李文林数学史教程[M]高教出版社
143 评论(10)

L77548

上教育网或学习网有范文
167 评论(9)

相关问答