期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    5

  • 浏览数

    340

dilemma
首页 > 期刊问答网 > 期刊问答 > 论文数据支撑是什么工作岗位

5个回答 默认排序1
  • 默认排序
  • 按时间排序

luyis99

已采纳
数据分析员的未来前景还是很好的,比较熟知的方向是如下:1、数据开发方向:偏技术,包括开发工程师、挖掘工程师、算法工程师、数仓工程师,这些相对门槛有点高,对学历、专业、毕业学校要求都是比较高的。2、分析方向:偏业务,是通过数据发现业务问题,洞察行业机会点,通过数据产生的价值驱动企业的发展,这也是现在企业数字化转型最需要的人才,对编程能力要求较低。 了解数据分析可以到CDA了解,其与国际知名考试服务机构 Pearson VUE 合作,认证考点覆盖全球。CDA 全球会员联盟开放式合作进一步建立企业会员与雇主联盟,具备中立性并逐步成为国际化认证标杆。并且2017 年 7 月 29 日,第四届 CDAS 中国数据分析师 行业峰会成功举办。浏览破纪录地超过 17 万,报名人数将近 5000 人,7 家直播方提供线上直播, 参与直播观看的人数超过 20 万,国内最大的数据分析师行业峰会的称号当之无愧。

论文数据支撑是什么工作岗位

202 评论(8)

qinfeng86

随着大数据技术在各行各业应用的越来越广,数据驱动智能产品和精细化运营已经成为企业经营的制胜法宝,相应地,数据分析师这个岗位也越来越受到关注,越来越多的小伙伴也转行做数据分析,因为大家不仅看到的是未来数据分析的发展前景,更看重数据分析师的薪资待遇。数据分析师的在企业中的主要作用是支持与指导业务发展。基本合格的数据分析师能够支持业务发展,优秀的数据分析师能够指导业务发展。岗位缺口大,就业薪资高,而且这个岗位对学历的要求不是特别高,对经验的要求也不算严格,在大数据时代,数据分析师迎来了黄金就业期。数据分析师,这是数据分析职业的起点。有些企业则会根据自身所处行业特点,赋予数据分析师一些更具体的岗位名称,例如业务分析师、运营分析师、数据库分析师和财务数据分析师等。虽然所处的行业不同、业务不同,但对于技术来说万变不离其宗,所有数据分析师的最主要职能都是针对业务或运营问题或需求,去获取、清洗、分析数据,并呈现数据分析结果,辅助企业做出判断或决策。通过搜索BOSS直聘和领英,可以发现其上面有上有10万+个数据分析师职位空缺,其中绝大部分是互联网行业的需求。值得注意的是,虽然国内现有很多数据分析师员工,但其数量占比依旧很少,职位空缺却占到了市场的50%之多。大多数热门岗位都会在招聘JD中,给出“具备数据分析能力”这样的招聘条件。想要了解更多关于数据分析师的相关信息,推荐选择十方融海。十方融海通过自主研发,形成“知识分享平台-荔枝微课+在线SaaS工具-女娲云教室+新职业技能课程”业务矩阵,让知识触手可及,帮助用户实现兴趣与技能双向进阶,实现职业自由。以科技推动教育改革,教育创造美好生活为理念,致力于实现让知识像水电一样走进千家万户,让学员掌握数据分析、职场写作等的核心技能,助力职场人早日实现升职加薪。
302 评论(8)

zhuazhou

工作职责:互联网本身具有数字化和互动性的特征,这种属性特征给数据搜集、整理、研究带来了革命性的突破。以往“原子世界”中数据分析师要花较高的成本(资金、资源和时间)获取支撑研究、分析的数据,数据的丰富性、全面性、连续性和及时性都比互联网时代差很多。与传统的数据分析师相比,互联网时代的数据分析师面临的不是数据匮乏,而是数据过剩。因此,互联网时代的数据分析师必须学会借助技术手段进行高效的数据处理。更为重要的是,互联网时代的数据分析师要不断在数据研究的方法论方面进行创新和突破。就行业而言,数据分析师的价值与此类似。就新闻出版行业而言,无论在任何时代,媒体运营者能否准确、详细和及时地了解受众状况和变化趋势,都是媒体成败的关键。此外,对于新闻出版等内容产业来说,更为关键的是,数据分析师可以发挥内容消费者数据分析的职能,这是支撑新闻出版机构改善客户服务的关键职能。扩展资料:技能要求:1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。2、懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。3、懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。参考资料来源:百度百科--数据分析师
209 评论(14)

dyq7150

其实数据分析师的职责和岗位内容去招聘岗位JD一查就知道,而题主真正想知道的是如何成为一名优秀的数据分析师。一、“优秀”的定义首先大家先来看下阿里对数据分析师职位的要求和描述:数据分析岗位描述和岗位要求不难看出,对数据分析师的要求首先就是构建业务数据体系,然后就是要深入理解业务数据,支持业务发展,给出重点业务数据分析意见,帮助业务给出优化建议和落地方案。那其实这时候你就实现了的数据分析岗位的价值-业务线,负责通过数据分析手段发现和分析业务问题,为决策作支持。所以优秀的数据分析师与业务结合才能真正体现其价值。二、数据分析师发展前景给大家分享一下数据分析师的成长路径数据分析师的成长路径NO1专业能力成长路径:助理数据分析师-数据分析师-资深数据分析师-高级数据分析师N2行政职位晋升路径:数据分析专员-数据分析主管-数据分析经理-数据分析总监N3主要专业技能要求:数据库知识(SQL)、基本的统计分析知识、熟练掌握Excel,了解SPSS/SAS,良好的PPT展示能力。很多小伙伴也会担心数据分析的工作会逐渐被AI取代,大家不用担心的,之后可能一些重复性的“体力活”,比如取数,会被AI取代,但是如果你选择在一个垂直的行业以及岗位深耕并且积累的业务经验是不能被取代的。接下来分享一下不同的公司对于数据分析的岗位需求第一类:互联网公司,互联网公司的特征就是用户至上,我们要知道用户喜欢什么,他的需求是什么,所以在互联网公司中,对于数据的需求有三点①用户洞察 ②数据提取 ③实时数据分析所以在这里主要的工作内容可能包括:从MySQL数据库中提取数据,成为Excel数据透视表的高手以及生成最基本的数据可视化(如线和条形图)。偶尔分析一下A/ B测试的结果,这样的公司可以为你创造一个尝试新事物和扩大新技能的环境。需求职位:统计分析员、数据分析师第二类:BAT等数据平台企业,大厂的特征就是我们就是数据,数据就是我们,所以他们的需求就是可以生产大数据驱动的产品和机器学习方向还有许多公司,他们的数据(或他们的数据分析平台)就是他们的产品。在这种情况下,数据分析或机器学习的任务就会非常繁重。能对一个有正式的数学,统计学或物理学背景并希望继续走一条更学术的道路的人来说是更理想的环境。这一类的公司可能是面向消费者的拥有海量数据的公司或者以提供数据为基础的服务的公司。数据平台类企业的需求职位:大数据工程师、数据分析师、数据挖掘工程师第三类:其他数据驱动的非数据公司,这些公司是通过数据分析优化产品,提升产品竞争力,他们所需要的是数据处理、数据分析、数据可视化。很多公司都属于这一类,面试的公司关心数据,但可能不是一个数据公司。因此,进行数据分析,了解产品代码,将数据可视化等等,这些能力是同等重要的。一般来说,这些公司要么寻求通才,要么寻找一个能填补他们团队空缺的专才,比如数据可视化或机器学习方面的。面试这一类的公司的时候,比较重要的技能是熟悉“大数据”的专用工具如:Hive/ Pig,以及有处理杂乱无章的真实数据集的经验。最后,希望回答对题主以及应届毕业生或者刚工作1-3年想转行的人有帮助,也欢迎有同样困惑的小伙伴私信我哦!
343 评论(11)

绛月1994

什么时候学数据分析都来得及(至少在5年内,这句话有效)。之所以这么说,主要还是因为数据分析行业越来越受到各行各业的认可。尤其是过去的2020年,新冠疫情的到来,大家对数据分析行业得到了极大的认可。尤其是《2021年新冠肺炎预防指南》出炉后,数据分析师这里一角色更是深入人心。不仅如此,该指南还宣称,随着企业复工复产,后疫情时代对数据分析技能的需求,可能会达到历史最高值。导致这一现象的根本原因,还是由于每个组织和行业,都迫切需要数据分析师们将最新行业数据转换为策略方针,为各行各业的未来“指点江山”。
146 评论(13)

相关问答