jinsheng远大
一些趣闻 一般公认,历史上可考的、年代最久远的数学家是古希腊几何学家泰勒斯。 史上著作与论文总量第二多的是十七世纪的著名瑞士数学家欧拉,他的纪录一直到二十世纪才被匈牙利数学家保罗·埃尔德什打破。数学家名言 “我国科学家王菊珍对待实验失败有句格言,叫做“干下去还有50%成功的希望,不干便是100%的失败。” ----王菊珍 “一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数的值就越小。” ----托尔斯泰 "数学的本质在於它的自由”---- 康扥尔(Cantor) “在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要”---- 康扥尔(Cantor) "没有任何问题可以向无穷那样深深的触动人的情感, 很少有别的观念能像无穷那样激励理智产生富有成果的思想, 然而也没有任何其他的概念能向无穷那样需要加以阐明”---- 希尔伯特(Hilbert) “数学是无穷的科学”----赫尔曼外尔 "问题是数学的心脏”---- PRHalmos “只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰亡” ----Hilbert “数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深”---- 高斯 “时间是个常数,但对勤奋者来说,是个‘变数’。用‘分’来计算时间的人比用‘小时’来计算时间的人时间多59倍。” ----雷巴柯夫 “在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决。” ----华罗庚 “天才=1%的灵感+99%的血汗。”---- 爱迪生 “要利用时间,思考一下一天之中做了些什么,是‘正号’还是‘负号’,倘若是‘+’,则进步;倘若是‘-’,就得吸取教训,采取措施。” ----季米特洛夫 “近代最伟大的科学家爱因斯坦在谈成功的秘诀时,写下一个公式:A=x+y+z。并解释道:A代表成功,x代表艰苦的劳动,y代表正确的方法,Z代表少说空话。” ----爱因斯坦 “数学是无穷的科学” ----赫尔曼外尔 “数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深 数学是科学之王” ----高斯 “在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要” ----康扥尔 “只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示独立发展的终止或衰亡” ----希尔伯特 “在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么” ----毕达哥拉斯 “一门科学,只有当它成功地运用数学时,才能达到真正完善的地步” ----马克思 “一个国家的科学水平可以用它消耗的数学来度量” ----拉奥 “数学——科学不可动摇的基石,促进人类事业进步的丰富源泉。” ---- 巴罗 “在奥林匹斯山上统治著的上帝,乃是永恒的数。” ----雅可比 “如果没有数所制造的关於宇宙的永恒的仿造品,则人类将不能继续生存。” ----尼采 “不懂几何者免进。” ----柏拉图 “几何无王者之道!” ---- 欧几里得 “数学家实际上是一个著迷者,不迷就没有数学。” ---- 诺瓦利斯 “没有大胆的猜测,就做不出伟大的发现。” ---- 牛顿 “数统治着宇宙。”----毕达哥拉斯 “数学,科学的女皇;数论,数学的女皇。”----高斯 “上帝创造了整数,所有其余的数都是人造的。” ----克隆内克 “上帝是一位算术家” ----雅克比 “一个没有几分诗人气的数学家永远成不了一个完全的数学家。”----维尔斯特拉斯 “纯数学这门科学再其现代发展阶段,可以说是人类精神之最具独创性的创造。”----怀德海 “可以数是属统治着整个量的世界,而算数的四则运算则可以看作是数学家的全部装备。”----麦克斯韦 “数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的真理是密切相连的。”----史密斯 “无限!再也没有其他问题如此深刻地打动过人类的心灵。”----希尔伯特 “发现每一个新的群体在形式上都是数学的,因为我们不可能有其他的指导。”----达尔文 “宇宙的伟大建筑是现在开始以纯数学家的面目出现了。”----京斯 “这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。”----A?N?怀德海 “给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。”----柯西 “纯数学是魔术家真正的魔杖。”----诺瓦列斯 “如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。”----柏拉图 “整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。”----伯克霍夫 “数学不可比拟的永久性和万能性及他对时间和文化背景的独立行是其本质的直接后果。”----A?埃博 “生命只为两件事,发展数学与教授数学” ----普尔森 “用心智的全部力量, 来选择我们应遵循的道路。”----笛卡儿 “我不知道, 世上人会怎样看我; 不过, 我自己觉得, 我只像一个在海滨玩耍的孩子, 一会捡起块比较光滑的卵石, 一会儿找到个美丽的贝壳; 而在我前面, 真理的大海还完全没有发现。” ----牛顿 “我之所以比笛卡儿看得远些, 是因为我站在巨人的肩上。” ----牛顿 “不亲自检查桥梁的每一部分的坚固性就不过桥的旅行者是不可能走远的。 甚至在数学中有些事情也要冒险。” ----贺拉斯兰姆 “前进吧, 前进将使你产生信念。”----达朗贝尔 “读读欧拉, 读读欧拉, 他是我们大家的老师。” ----拉普拉斯 “如果我继承可观的财产, 我在数学上可能没有多少价值了。”----拉格朗日 “我把数学看成是一件有意思的工作, 而不是想为自己建立什么纪念碑。 可以肯定地说, 我对别人的工作比自己的更喜欢。 我对自己的工作总是不满意。 ”----拉格朗日 “一个人的贡献和他的自负严格地成反比,这似乎是品行上的一个公理。 ”----拉格朗日 “看在上帝的份上, 千万别放下工作!这是你最好的药物。 ”----达朗贝尔 “我的成功只依赖两条。 一条是毫不动摇地坚持到底; 一条是用手把脑子里想出的图形一丝不差地制造出来。” ----蒙日 “天文科学的最大好处是消除由于忽视我们同自然的真正关系而造成的错误。 因为社会秩序必须建立在这种关系之上, 所以这类错误就更具灾难性。 真理和正义是社会秩序永恒不变的基础。 但愿我们摆脱这种危险的格言, 说什么进行欺骗和奴役有时比保障他们的幸福更有用! 各个时代的历史经验证明, 谁破坏这些神圣的法则, 必将遭到惩罚。” ----拉普拉斯 “有时候, 你一开始未能得到一个最简单,最美妙的证明, 但正是这样的证明才能深入到高等算术真理的奇妙联系中去。 这是我们继续研究的动力, 并且最能使我们有所发现。” ----高斯 “如果别人思考数学的真理像我一样深入持久, 他也会找到我的发现。” ----高斯 “人死了, 但事业永存。 ” ----柯西 “精巧的论证常常不是一蹴而就的,而是人们长期切磋积累的成果。 我也是慢慢学来的,而且还要继续不断的学习。” ----阿贝尔 “到底是大师的著作, 不同凡响!”----伽罗瓦 “异常抽象的问题, 必须讨论得异常清楚。 ” - ---笛卡儿 “我思故我在。”----笛卡儿 “我决心放弃那个仅仅是抽象的几何。这就是说,不再去考虑那些仅仅是用来练思想的问题。我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何。”----笛卡儿 "数学是人类知识活动留下来最具威力的知识工具,是一些现象的根源。数学是不变的,是客观存在的,上帝必以数学法则建造宇宙。”----笛卡儿 “直接向大师们而不是他们的学生学习。” ----阿贝尔 “挑选好一个确定得研究对象, 锲而不舍。 你可能永远达不到终点, 但是一路上准可以发现一些有趣的东西。” ---克莱因 “我决不把我的作品看做是个人的私事, 也不追求名誉和赞美。 我只是为真理的进展竭尽所能。 是我还是别的什么人, 对我来说无关紧要, 重要的是它更接近于真理。 ” ----维尔斯特拉斯 “思维的运动形式通常是这样的:有意识的研究-潜意识的活动-有意识的研究。”----庞加莱 “人生就是持续的斗争, 如果我们偶尔享受到宁静, 那是我们先辈顽强地进行了斗争。 假使我们的精神, 我们的警惕松懈片刻, 我们将失去先辈为我们赢得的成果。 ” ----庞加莱 “如果我们想要预见数学的将来, 适当的途径是研究这门学科的历史和现状。 ”----庞加莱 “我们必须知道, 我们必将知道。” ----希尔伯特 “扔进冰水, 由他们自己学会游泳, 或者淹死。 很多学生一直要到掌握了其他人做过的, 与他们问题有关的一切,才肯试着靠自己去工作, 结果是只有极少数人养成了独立工作的习惯。 ” ----ET贝尔 “一个人如果做了出色的数学工作, 并想引起数学界的注意, 这实在是容易不过的事情, 不论这个人是如何位卑而且默默无闻, 他只需做一件事:把他对结果的论述寄给 处于领导地位的权威就行了。” ----莫德尔 “数学家通常是先通过直觉来发现一个定理; 这个结果对于他首先是似然的, 然后他再着手去制造一个证明。” ----哈代 “一个做学问的人, 除了学习知识外, 还要有“taste”, 这个词不太好翻译, 有的译成品味, 喜爱。 一个人要有大的成就, 就要有相当清楚的“taste。 ”----杨振宁 “如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误。给我五个系数,我将画出一头大象;给我第六个系数,大象将会摇动尾巴。人必须确信,如果他是在给科学添加许多新的术语而让读者接着研究那摆在他们面前的奇妙难尽的东西,已经使科学获得了巨大的进展。”----柯西 “数学是一门演绎的学问,从一组公设,经过逻辑的推理,获得结论。”----陈省身 “科学需要实验。但实验不能绝对精确。如有数学理论,则全靠推论,就完全正确了。这是科学不能离开数学的原因。许多科学的基本观念,往往需要数学观念来表示。所以数学家有饭吃了,但不能得诺贝尔奖,是自然的。” ---陈省身 “数学中没有诺贝尔奖,这也许是件好事。诺贝尔奖太引人注目,会使数学家无法专注于自己的研究。” ----陈省身 “我们欣赏数学,我们需要数学。”----陈省身 “一个数学家的目的,是要了解数学。历史上数学的进展不外两途:增加对于已知材料的了解,和推广范围。” ----陈省身 “虽然不允许我们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能发生这样的情形:一定的虚构假设足以解释许多现象。”----欧拉 “因为宇宙的结构是最完善的而且是最明智的上帝的创造,因此,如果在宇宙里没有某种极大的或极小的法则,那就根本不会发生任何事情。”----欧拉 “迟序之数,非出神怪,有形可检,有数可推。”----祖冲之 “事类相推,各有攸归,故枝条虽分而同本干知,发其一端而已。又所析理以辞,解体用图,庶亦约而能周,通而不黩,览之者思过半矣。”----刘徽 “虚数是奇妙的人类棈神寄托,它好像是存在与不存在之间的一种两栖动物。”----莱布尼茨 “不发生作用的东西是不会存在的。”----莱布尼茨 “考虑了很少的那几样东西之后,整个的事情就归结为纯几何,这是物理和力学的一个目标。” ----莱布尼茨 “几何看来有时候要领先于分析,但事实上,几何的先行于分析,只不过像一个仆人走在主人的前面一样,是为主人开路的。”----西尔维斯特 “也许我可以并非不适当地要求获得数学上亚当这一称号,因为我相信数学理性创造物由我命名(已经流行通用)比起同时代其它数学家加在一起还要多。 ”----西尔维斯特 “一个没有几分诗人才能的数学家决不会成为一个完全的数学家。”----魏尔斯特拉斯 只是题材 
数学真好玩读后感我今天看了一本书,叫《好玩的数学》。这本书可好看了,有许多魔术。我这个人向来就喜欢数学,这本书更是引人入胜。像拓扑变换呀,间隔相等哪,钟面猜心术什么的,原本乱糟糟谁也听不懂的怪东西都被它用深入浅出的手法,一个一个写得生动传神。这本书还有一个好处,就是能让你在集体活动中受欢迎。里面的一些数学魔术,不明底细的人常常会把它当作玩命。有机会表演,在场的人一定会拍手叫好。若是在联欢晚会上露一手,大家不羡慕你才怪呢!《好玩的数学》的确是一本有趣而长知识的书,真好。本书是“如何教好新课程丛书”中的一本,全书共分四章:从哪里获得数学教学素材、怎样用好教材实施教学、怎样开发学具与教具的新价值、如何在网络环境下开发教学资源。先说说第一章“从哪里获得数学教学素材”。书中列举了“趣味活动”、“日常生活”、“书报和网络”、“广告和宣传资料”、“游戏活动”五个不同的素材源。不论是有趣的数宝宝聚会,还是受中央电视台《正大综艺》节目中的“是真是假”栏目的影响而设计“这是真的吗?”来引导学生学年月日知识,抑或是找日记中的数学错误活动,都让人不得不慨叹:教学素材真是为有心人准备的。在日常生活中辨方向,利用“批发与零售”巧释连乘应用题的两种不同解法,从自然现象中看“循环”以帮助学生认识循环小数。第二章第一节“如何让学生在活动中学习概念”。在我记忆中的数学概念学习是较为枯燥的,几乎总是遵循“简单感受——告知结论——变式练习——理解概念”这样的教学模式。而本书推崇的是:对概念的学习与建构应该主要依靠学生自主、自觉的探究活动。在经历概念的形成过程之后,学生对概念的理解、掌握就会在脑子里生根发芽,在适合的土壤中,它能自主地生长,而不是教师用大量的练习“催熟”。书中所举的例子,关于“质数与合数”的教学,采用游戏方式教学效果非常好:让学生准备印有自己学号的卡片,贴在自己的身上,并把学号的因数写在卡片上,做成头饰戴在头上。上课时,先交流自己的学号号数以及号数的因数。随后,提出要求:在小组里把号数按因数的特点分成两类……另外,还有“自制扑克牌”(张数在50~100张之间,一张只写一个数,不能重复)可用来复习《数的整除》单元的知识。第三节“计算教学的思考”。在平时的教研活动中,几乎很难遇上计算教学方面的研讨。计算教学怎么就这么不招人待见呢?传统的计算教学往往是“算对就是硬道理”“一道例题一条法则”“读一读,记一记”“死记法则多练题”。于是,多年来,老师们便慨叹“这道题,我都不知道讲了多少遍,怎么学生还不会?”较好的办法是,让学生亮出“心中”的法则,在自己举例,尝试计算中体会算法,然后通过小组交流归纳出计算法则。与老师或书本将计算法则强加给学生相比,这种让学生经历学习过程后得到的感悟和理解,更有利于学生计算能力的提高。在比如教学三位数减法“300-97”时,可通过导演“没零钱,怎么办”的小品,在课上要求“演员”把“300-100+3”作为重要剧情进行展示。这样,在欣赏“找钱的过程”中,学生不知不觉地就能弄清“多减要加”的算理。对待学生的计算错误,不能因学生的一句“粗心呗”就草草了事,可以组织学习小组从计算心态、计算习惯、计算能力等方面找出出错的原因,并商议改进措施,使错误成为学生前进的铺路石。第四节“让‘量与计量’回归生活”。一看这个标题,我就想起今年上半年去花港观鱼时看到的一张通缉令上有关嫌疑人的描述:身高72cm。这一素材带回学校后,有些学生看了半天没看出问题所在。虽然,这不足以说明学生学的有关计量方面的知识与生活脱节,但在这段时间的复习卷中,遇到有关房子面积的题较为模糊——把“142平方米的房子”算成“42平方米”,不能不说是一种生活数学意识的缺失。因此,在教学量与计量时,宜让学生亲自感受,在玩中学,从而获得最直接的体验。第三章关于学具和教具开发的新价值。关于圆锥体积公式推导时同时用水和沙子做教具,在沙子装满透明容器后再用水去除空隙部分,这样观察等底等高圆柱和圆锥间的联系更有利。 在多方位认识物体时,充分利用学生的玩具做文章。再比如围棋子、小石子等也可以作为帮助学生掌握数位和数序的好学具。教学“角”这个知识时,可以充分利用每个儿童的身体部位做文章。总的来说,教具学具的开发应遵循“整合性(1+1>2)”、“生成性”和“创新性”原则。第四章关于如何在网络环境下开发教学资源,其中最引人注意的是网络环境促使学生作业形式的变革。作业变革是近段时间我极为关注的一个方面,让学生拥有一份能根据学习状况自己可选择、具有趣味性和创造性的作业一直是我对学生作业的一种美好愿望。书中的两个案例给我不少启发。一是借助专题性学习网站,让数学作业变脸,比如小学数学“年、月、日”的专题性学习网站中就包含“智慧岛”(分为年月日练习、平闰年练习、IQ题、综合检测题等等)、“网上答题聪明屋”、“作品展”、“日月时空、平闰年王国、课外资料库”。在做好技术准备后,可将作业分两个层次:一是每天10分钟的常规同步练习,在学校里就能完成;二是回家后指定在学校的某个专题性学习网站中选择性的联系。网络环境下的分层练习使不同层次的学生的学习能力得到了不同的发展。总的说来,这是一本值得小学数学教师读的书。
华罗庚故事 成功对每个人来说都是一件幸运的事,但不是每一个人都能获得成功。成功不是路边的小石子随处可捡,也不是田间的小草随意可觅。要成功,需要有一段漫长的路要走,在这期间是要经过许多挫折的。1930 年的一天,清华大学数学系主任熊庆来,坐在办公室里看一本《科学》杂志。看着看着,不禁拍案叫绝:“这个华罗庚是哪国留学生?”周围的人摇摇头,“他是在哪个大学教书的?”人们面面相觑。最后还是一位江苏籍的教员想了好一会儿,才慢吞吞地说:“我弟弟有个同乡叫华罗庚,他哪里教过什么大学啊!他只念过初中,听说是在金坛中学当事务员。” 熊庆来惊奇不已,一个初中毕业的人,能写出这样高深的数学论文,必是奇才。他当即做出决定,将华罗庚请到清华大学来。 从此,华罗庚就成为清华大学数学系助理员。在这里,他如鱼得水,每天都游弋在数学的海洋里,只给自己留下五、六个小时的睡眠时间。说起来让人很难相信,华罗庚甚至养成了熄灯之后,也能看书的习惯。他当然没有什么特异功能,只是头脑中一种逻辑思维活动。他在灯下拿来一本书,看着题目思考一会儿,然后熄灯躺在床上,闭目静思,开始在头脑中做题。碰到难处,再翻身下床,打开书看一会儿。就这样,一本需要十天半个月才能看完的书,他一夜两夜就看完了。华罗庚被人们看成是不寻常的助理员。 第二年,他的论文开始在国外著名的数学杂志陆续发表。清华大学破了先例,决定把只有初中学历的华罗庚提升为助教。 几年之后,华罗庚被保送到英国剑桥大学留学。可是他不愿读博士学位,只求做个访问学者。因为做访问学者可以冲破束缚,同时攻读七、八门学科。他说:“我到英国,是为了求学问,不是为了得学位的。” 华罗庚没有拿到博士学位。在剑桥的两年内,他写了 20 篇论文。论水平,每一篇都可以拿到一个博士学位。其中一篇关于“塔内问题”的研究,他提出的理论被数学界命名为“华氏定理”。 华罗庚曾说:“科学上没有平坦的大道,真理的长河中有无数礁石险滩。只有不畏攀登的采药者,才能登上高峰觅得仙草;只有不怕巨浪的弄潮儿,才能深入水底觅得骊珠。”科学上的每一个真理都是在经历无数次的挫折、失败之后才得出的。我们要正视挫折,正确对待挫折,只有这样,才能让挫折变成我们走向成功的阶梯。华罗庚以一种热爱科学,勤奋学习,不求名利的精神,献身于他所热爱的数学研究事业。他抛弃了世人所追求的金钱、名利、地位。最终,他的事业成功了。 华罗庚把科学研究与实际应用紧密结合起来。华罗庚把数学应用到工农业生产上,对我国现代化建设做出了突出的贡献。 挫折可以战胜,挫折孕育着成功,而前提是具有坚定的信念和勇往直前的精神。当具备了这些条件之后,挫折就会被你踩在脚下,明天就是拨开浮云见丽日之时。 14