fanling
摘要本文详细论述了现代移动通信技术的六大最新发展趋势:网络业务的数据化、分组化,网络技术的宽带化,网络技术的智能化,更高的频段,更有效利用频率,网络趋于融合、走向统一。了解、掌握这些趋势对移动通信运营商和设备制造商均具有重要的现实意义。关键词 移动通信 Internet 无线数据 IMT-2000 智能网 网络融合1前言移动通信业务之所以发展迅猛主要是其满足了人们在任何时间。任何地点与任何个人进行通信的愿望。移动通信是实现未来理想的个人通信服务的必由之路。在信息支撑技术、市场竞争和需求的共同作用下,移动通信技术的发展更是突飞猛进,呈现出以下几大趋势:网络业务数据化、分组化,网络技术宽带化,网络技术智能化,更高的频段,更有效利用频率,各种网络趋于融合。了解、掌握这些趋势对移动通信运营商和设备制造商均具有重要的现实意义。2网络业务数据化、分组化1无线数据——生机无限当前移动数据通信发展迅速,被认为是移动通信发展的一个主要方向。近年来出现的移动数据通信主要有两种,一种是电路交换型的移动数据业务,如TACS、AMPS和GSM中的承载数据业务以及GSM系统的HSCSD;另外一种是分组交换型的移动数据业务,如摩托罗拉的DataTAC、爱立信的Mobitex和GSM系统的GPRS。目前,无线数据业务只占GSM网络全部业务量中的很小一部分,但是在未来的两年中这种状况将开始扭转,并大大改变。1999年以后,随着HSCSD、GPRS等新的高速数据解决方案显露峥嵘,并成为数据应用的新焦点,无线数据将成为运营商经营计划中越来越重要的部分,它预示着未来大量的商业机遇。(1)应用驱动市场无线数据业务的主要驱动力在于用户的应用。话音是单一的、易于被大众所接受的业务,然而无线数据则不同,无线数据最初的应用重点放在运输管理这样的专业市场。近期无线数据业务的目标市场是销售人员或现场工程师这样的用户群。从这些先发目标的应用中积累无线数据的经验,并从中受益。在过去的十年里,传统的生活方式已经在迅速改变,人们更经常性地移动,职业和个人生活之间的分界变得模糊,人们需要不分时间、地点访问很重要的信息。发生在用户身上的这种生活方式的改变将成为驱动无线数据业务发展的重要因素。(2)因特网的影响和通信的其他领域一样,无线数据业务的一个最重要的驱动力来自Internet。根据最近的研究,未来两年欧洲的因特网用户数量将翻一番。在我国,因特网用户的年增长率将高达300%,显然用户在运动中接入因特网的需求将会增长。为了满足接入因特网的需求,一个全球性的开放协议——无线应用协议(WAP)应运而生。WAP为将Internet的信息内容以及增值业务传送到移动终端提供了一种开放的通用标准,实现了IP与GSM网络的桥接,是一个为厂商提供加速市场增长、避免网络割接、保护运营商投资的标准,WAP确保任何与WAP兼容的GSM手机都能工作。(3)数据速率的发展GSM承载业务所提供的GSM数据速率最高只能达到6kbit/s。国际上1998年引入的高速电路交换数据(HSCSD)技术将实现57kbit/s的数据速率,对要求连续比特率和传输时延小的应用是理想的,如会议电视、电子邮件、远程接入企业的局域网和无线图像。1999年商用化的GPRS是第一个GSM分组数据应用,将实现超过100kbit/s的数据速率。对较短的“突发”类型业务是理想的,如信用卡认证、远程测量和远程事务处理。EDGE(增强数据速率GSM改进模式)使用修改过的GSM调制方式来实现超过300kbit/s的数据速率。EDGE会让 GSM运营商特别受益,他们不但可以赢得第三代移动通信的经营执照,还可以提供有竞争力的宽带数据业务。2个人多媒体通信——网络演进的方向对随时随地话音通信的追求使早期移动通信走向成功。移动通信的商业价值和用户市场得到了证明,全球移动市场以超凡的速度增长。移动通信演进的下一阶段是向无线数据乃至个人移动多媒体转移,这一进展已经开始,并将成为未来重要的增长点。个人移动多媒体将根据地点为人们提供无法想像的、完善的个人业务和无线信息,将对人们工作和生活的各个方面产生影响。在个人多媒体世界里,话音邮件和电子邮件被传送到移动多媒体信箱中;短信将成为带有照片和视频内容的电子明信片;话音呼叫将与实时图像相结合,产生大量的可视移动电话,还将实现移动因特网和万维网浏览。像无线会议电视这样的应用将随处可见,电子商务将蓬勃开展。对于运动中的用户还有随时随地的各种信箱和娱乐服务。3网络技术的宽带化在电信业历史上,移动通信可能是技术和市场发展最快的领域。业务、技术、市场三者之间是一种互动的关系,伴随着用户对数据、多媒体业务需求的增加,网络业务向数据化、分组化发展,移动网络必然走向宽带化。通过使用电话交换技术和蜂窝无线电技术,70年代末诞生了第一代模拟移动电话。AMPS(北美蜂窝系统)、NMT(北欧移动电话)和TACS(全向通信系统)是三种主要的窄带模拟标准。第一代无线网络技术的一大成就就是去掉了将电话连接到网络的用户线。用户第一次能够在他们所在的任何地方无线接收和拨打电话。第二代系统引入了数字无线电技术,它提供更高的网络容量,改善了话音质量和保密性,并为用户引入了无缝的国际漫游。今天世界市场的第二代数字无线标准,包括GSM、MMPS、PDC(日本数字蜂窝系统)和IS95 CDMA等,均仍为窄带系统。第三代移动系统,即IMT-2000,是一种真正的宽带多媒体系统,它能够提供高质量宽带综合业务并实现全球无缝覆盖。2000年以后,窄带移动电话业务需求将依然很大,但随着Internet等高速数据通信及多媒体通信需求的驱动,宽带多媒体综合业务将逐步增长,而且就未来信息高速公路建设的无缝覆盖而言,宽带移动通信作为整个移动市场份额的子集将显得愈来愈重要。第三代系统预计在2002年投入商用。从第二代到第三代系统的变化并不像从第一代模拟网络到第二代数字网络那样存在重大的技术变迁。从目前的技术发展现状和趋势来讲,第二代系统将逐步子滑过渡到第三代系统,在此演进过程中,移动网络所能实现的数据速率逐步升级: GSM承载业务所能提供的数据速率为6kbit/s,1998年商用的HSCSD技术实现了57kbit/s的数据速率,1999年引入的GPRS将实现超过100kbit/s的数据速率,将在2000年引入的 EDGE技术可实现超过300kbit/s的数据速率。2001年后投入商用的第三代系统将能够在广域网上实现384kbit/s的数据速率,在办公室和家中还可以达到2Mbit/s。4网络技术的智能化移动通信需求的不断增长以及新技术在移动通信中的广泛应用,促使移动网络得到了迅速发展。移动网络由单纯地传递和交换信息,逐步向存储和处理信息的智能化发展,移动智能网由此而生。移动智能网是在移动网络中引人智能网功能实体,以完成对移动呼叫的智能控制的一种网络,是一种开放性的智能平台,它使电信业务经营者能够方便、快速、经济、有效地提供客户所需的各类电信新业务,使客户对网络有更强的控制功能,能够方便灵活地获取所需的信息。移动智能网通过把交换与业务分离,建立集中的业务控制点和数据库,进而进一步建立集中的业务管理系统和业务生成环境来达到上述目标。通过智能网,运营公司可以最优地利用其网络,加快新业务的生成;可以根据客户的需要来设计业务,向其他业务提供者开放网络,增加收益。关于移动智能网的研究,早在1995年就已开始,刚开始并没有具体的标准协议出现,各厂商各自制定了自己的标准,并且据此进行了不少的研究工作,如Alcatel、Nortel、Ericsson等都先后推出了自己的初期产品。这些工作为最终移动智能网标准的形成积累了经验。1997年末,美国蜂窝电信工业协会(CTIA)制定了移动智能网的第一个标准协议——IS-41D协议。1998年1月,欧洲电信标准研究所(ETSI)在GSM phase2+阶段引入了CAMEL协议(移动通信高级逻辑的客户化应用程序),当时的版本是Phase1。1998年4月,ITU-T在新推出的智能网能力集一2标准中描述了移动接入的功能实体,称为CAMEL phase2标准。伴随着移动网络向第三代系统的演进,网络的智能化程度也在不断地提升。智能网及其智能业务是构成未来个人通信的基本条件。5更高的频段从第一代的模拟移动电话,到第二代的数字移动网络,再到将来的第三代移动通信系统,网络使用的无线频段遵循一种由低到高的发展趋势。1981年诞生的第一个具有国际漫游功能的模拟系统NMT的使用频段为450MHz,1986年NMT变迁到900MHz频段。我国目前的模拟TACS系统的使用频段也为900 MHz。在第二代网络中,GSM系统的开始使用频段为900MHz,IS-95 CDMA系统为800MHz。为了从根本上提高GSM系统的容量,1997年出现了1800MHz系统,GSM 900/1800双频网络迅速普及。2002年将投入商用的第三代系统 IMT-2000则定位在2GHz频段。6更有效利用频率无线电频率是一种宝贵资源。随着移动通信的飞速发展,频谱资源有限和移动用户急剧增加的矛盾越来越尖锐,出现了“频率严重短缺”的现象。解决频率拥挤问题的出路是采用各种频率有效利用技术和开发新频段。模拟制的早期蜂窝移动通信系统采用频分多址方式,主要通过多信道共用、频率复用和波道窄带化等技术实现频率的有效利用。随着业务的发展,模拟系统已远不能满足用户发展的需求。数字移动通信比模拟移动通信具有更大的容量。同样的频分多址技术,数字系统要求的载干比较小,因而频率复用距离可以小一些,系统的容量可以大一些。而且,数字移动通信还可采用时分多址或码分多址技术,它比模拟的频分多址制在系统容量上大4-20倍。GSM作为最具代表性和最为成熟的数字移动通信系统,其发展历程就是一部频率有效利用技术的演进史。GSM采用时分多址制式,其对频率的有效利用主要是通过频率复用技术的不断升级实现的。从传统的4×3方式,到3×3、1×3、MRP、2×6等新的复用技术,频率复用的密集度逐步提升,频谱效率快速提高, GSM系统的容量得到逐步释放。1995年开始投入商用的IS-95 CDMA(窄带)系统,以无线技术的先进性和大容量等特点著称。它以扩频技术为基础,不同用户的信号靠不同的编码序列来区分,如果从频域或时域来观察,多个CDMA信号是相互重叠的,故理论上CDMA系统的频谱利用率比GSM系统更高,网络容量更大。同时CDMA系统具有一定的过载能力,即系统具备软容量。作为未来第三代移动通信系统主流无线接入技术的WCDMA(宽带码分多址)能够更高效地利用无线电频率。它利用分层小区结构、自适应天线阵和相干解调(双向)等技术,网络容量可得到大幅提高,可以更好地满足未来移动通信的发展要求。7网络趋于融合,走向统一1第三代移动通信系统的结构第三代系统的主要目标是将包括卫星在内的所有网络融合为可以替代众多网络功能的统一系统,它能够提供宽带业务并实现全球无缝覆盖。为了保护运营公司在现有网络设施上的投资,第二代系统向第三代系统的演进遵循平滑过渡的原则,现有的GSM、D-AMPS IS-136等第二代系统均将演变成为第三代系统的核心网络,从而形成一个核心网家族,核心网家族的不同成员之间通过NNI接口联结起来,成为一个整体,从而实现全球漫游。在核心网络家族的外围,形成一个庞大的无线接入家族,现有的几乎所有的无线接入技术以及 WCDMA等第三代无线接入技术均将成为其成员。2未来的网络构架技术的发展、市场需求的变化、市场竞争的加剧以及市场管制政策的放松将使计算机网、电信网、电视网等加快融合为一体,宽带IP技术成为三网融合的支撑和结合点。未来的网络将向宽带化、智能化、个人化方向发展,形成统一的综合宽带通信网,并逐步演进为由核。心骨干层和接八层组成、业务与网络分离的构架。 
摘要:文章论述了智能天线技术在未来移动通信系统中的重要作用。阐明了智能天线技术的不同实现方式:组件空间方式及波束空间方式,进而分析了在时分多址方式下实现智能天线的系统结构。最后,结合智能天线技术的应用进展,探讨了实现智能天线技术的难点,并讨论了自适应天线与多波束天线相结合的新方案。关键词:移动通信[13篇] 智能天线[6篇] 多波束智能天线[1篇] 自适应阵智能天线[1篇] 随着全球通信业务的迅速发展,作为未来个人通信主要手段的无线移动通信技术引起人们极大关注。如何消除同信道干扰(CCI)、多址干扰(MAI)与多径衰落的影响成为人们在提高无线移动通信系统性能时考虑的主要因素。智能天线利用数字信号处理技术,产生空间定向波束,使天线主波束对准用户信号到达方向,旁瓣或零陷对准干扰信号到达方向,达到充分高效利用移动用户信号并删除或抑制干扰信号的目的。与其它日渐深入和成熟的干扰削除技术相比,智能天线技术在移动通信中的应用研究更显得方兴未艾并显示出巨大潜力。1 智能天线技术的起源和发展 智能天线通常包括多波束智能天线和自适应阵智能天线。智能天线最初广泛应用于雷达、声纳及军事通信领域,由于价格等因素一直未能普及到其它通信领域。近年来,现代数字信号处理技术发展迅速,数字信号处理芯片处理能力不断提高,芯片价格已经可以为现代通信系统所接受。同时,利用数字技术在基带形成天线波束成为可能,以此代替模拟电路形成天线波束方法,提高了天线系统的可靠性与灵活程度,智能天线技术因此开始在移动通信中得到应用。另一方面移动通信用户数目增加迅速,人们对移动通话质量的要求也不断提高,这要求蜂窝小区在大容量下仍有高的话音质量。使用智能天线可以在不显著增加系统复杂度情况下满足扩充容量的需要。不同于常规的扇区天线和天线分集方法,通过在基站使用全向收发智能天线,可以为每个用户提供一个窄的定向波束,使信号在有限的方向区域发送和接收,充分利用了信号发射功率,降低了信号全向发射带来的电磁污染与相互干扰。不同于传统的时分多址(TDMA)、频分多址(FDMA)或码分多址(CDMA)方式,智能天线引入了第四维多址方式:空分多址(SDMA)方式。在相同时隙、相同频率或相同地址码情况下,用户仍可以根据信号不同的空间传播路径而区分。智能天线相当于空时滤波器,在多个指向不同用户的并行天线波束控制下,可以显著降低用户信号彼此间干扰。具体而言,智能天线将在以下方面提高未来移动通信系统性能:(1)扩大系统的覆盖区域;(2)提高系统容量;(3)提高频谱利用效率;(4)降低基站发射功率,节省系统成本,减少信号间干扰与电磁环境污染。 智能天线可以通过模拟电路方式实现:首先根据天线方向图确定馈源的激励系数,然后确定馈源的馈电网络即波束形成网络。由于馈电布线呈矩阵状,实现很复杂,随着阵元数目增加,更增加电路复杂度。为此,未来移动通信智能天线采用数字方法实现波束成形,即所谓数字波束形成DBF(Digital Beam-forming)天线。使用软件设计完成自适应算法更新,可以在不改变系统硬件配置前提下,增加系统灵活性。2 智能天线技术的实现方案 智能天线分为两大类:多波束智能天线与自适应阵智能天线,简称多波束天线和自适应阵天线。 多波束天线利用多个并行波束覆盖整个用户区,每个波束的指向是固定的,波束宽度也随阵元数目的确定而确定。随着用户在小区中的移动,基站选择不同的相应波束,使接受信号最强。因为用户信号并不一定在固定波束的中心处,当用户位于波束边缘,干扰信号位于波束中央时,接收效果最差,所以多波束天线不能实现信号最佳接收,一般只用作接收天线。但是与自适应阵天线相比,多波束天线具有结构简单、无需判定用户信号到达方向的优点。 自适应阵天线一般采用4~16天线阵元结构,阵元间距1/2波长,若阵元间距过大,则接收信号彼此相关程度降低,太小则会在方向图形成不必要的栅瓣,故一般取半波长。阵元分布方式有直线型、圆环型和平面型。自适应天线是智能天线的主要类型,可以实现全向天线,完成用户信号接收和发送。自适应阵天线系统采用数字信号处理技术识别用户信号到达方向,并在此方向形成天线主波束。自适应阵天线根据用户信号的不同空间传播方向提供不同的空间信道,等同于信号有线传输的线缆,有效克服了干扰对系统的影响。 智能天线采用数字方法对阵元接收信号加权处理形成天线波束,使主波束对准用户信号方向,而在干扰信号方向形成天线方向图零陷或较低的功率方向图增益,达到抑制干扰的目的。根据天线波束形成的不同过程,实现智能天线的方式又分为两类:组件空间处理方式与波束空间处理方式,以下分别讨论。1 组件空间处理方式 组件空间处理方式直接对阵元接收信号支路加权,调整信号振幅与相位,使天线输出方向图主瓣方向对准用户信号到达方向。因为是阵元组件信号,模数转换(ADC)后不经其它处理直接加权,故又称组件空间处理方式。2 波束空间处理方式 与组件空间处理方式的不同之处在于,信号从阵元组件接收并模数转换(ADC)后,需经相应处理(如快速付立叶变换),得到彼此正交的一组空间波束,再经过波束选择,从中根据需要选取部分或全部波束合成阵列输出方向图。 因为用户信号往往深埋于噪声信号与干扰信号中,不易得到阵元接收信号的最佳加权。采用波束空间处理方式可以从多波束中选择信号最强的几个波束,以取得符合质量要求的信号,这样可以在满足阵列接收效果的前提下减少运算量和降低系统复杂度。 智能天线技术在实现过程中可以采用不同算法,主要有最小均方算法(LMS)、递归最小平方算法(RLS)和恒模算法(CMA)。其中最小均方算法(LMS)、递归最小平方算法(RLS)需要系统提供与用户信号相关的参考信号,用以计算误差,控制阵列加权。恒模(CMA)算法利用阵列输出信号恒包络原理,不需要参考信号,属于盲均衡方法。从通信系统整体考虑,智能天线技术独立于传统的多址方式和调制类型,可以应用于TDMA、FDMA或CDMA多址系统。但是,在具体实现过程中,天线接收结果是有差别的。作为提高移动通信系统容量的重要手段,智能天线主要在基站作用。对于收发共用类型全向智能天线,采用时分双工(TDD)方式的自适应天线更为合适。频分双工(FDD)方式由于上行(从用户到基站)与下行链路(从基站到用户)有45MHz或80MHz频率间隔,信号传播的无线环境受频率选择性衰落影响各不相同,故根据上行链路计算得到的权值不能直接应用于下行链路。在TDD方式中上行与下行链路间隔时间短,使用相同频率传输信号,上、下行链路无线传播环境差异不大,可以使用相同权值,故TDD方式优于FDD方式。未来移动通信系统工作频率更高,在满足半波长阵元间隔条件下,天线尺寸可以做得更小,使在移动用户端使用智能天线也成为可能。3 智能天线的研究进展 目前正处于确立第三代移动通信技术标准之时,欧、日、美等国非常重视智能天线技术在未来移动通信方案中的地位与作用。已经开展了大量的理论分析研究,同时也建立了一些技术试验平台。1 欧洲 欧洲通信委员会(CEC)在RACE(Research into Advanced Communication in Europe)计划中实施了第一阶段智能天线技术研究,称之为TSUNAMI(The Technology in Smart Antennas for Universal Advanced Mobile Infrastructure),由德国、英国、丹麦和西班牙合作完成。 项目组在DECT基站基础上构造智能天线试验模型,于1995年初开始现场试验。天线由八个阵元组成,射频工作频率为89GHz,阵元间距可调,阵元分布分别有直线型、圆环型和平面型三种形式。模型用数字波束成形的方法实现智能天线,采用ERA技术有限公司的专用ASIC芯片DBF1108完成波束形成,使用TMS320C40芯片作为中央控制。研究方案包括波束空间处理方式和组件空间处理方式。组件处理方式天线是收发全向类型,采用TDD双工方式。系统评估了识别信号到达方向的MUSIC算法,采用的自适应算法有NLMS(Normalized Least Mean Squares)算法和RLS(Recursive Least Square)算法。 实验系统验证了智能天线的功能,在两个用户四个空间信道(包括上行和下行链路)下,试验系统比特差错率(BER)优于10-3。实验评测了采用MUSIC算法判别用户信号方向的能力,同时,通过现场测试,表明圆环和平面天线适于室内通信环境使用,而像市区环境则采用简单的直线阵更合适。 欧洲通信委员会(CEC)准备在ACTS(Advanced Communication Technologies and Services)计划中继续进行第二阶段智能天线技术研究,具体问题集中于以下方面:最优波束形成算法、系统协议研究与系统性能评估、多用户检测与自适应天线结构、时空信道特性估计及微蜂窝优化与现场试验。2 日 本 ATR光电通信研究所研制了基于波束空间处理方式的多波束智能天线。天线阵元布局为间距半波长的16阵元平面方阵,射频工作频率是545GHz。阵元组件接收信号在模数变换后,进行快速付氏变换(FFT)处理,形成正交波束后,分别采用恒模(CMA)算法或最大比值合并分集算法。天线数字信号处理部分由10片FPGA完成,整块电路板大小为3cm×0cm。 野外移动试验确认了采用恒模(CMA)算法的多波束天线功能。理论分析及实验证明使用最大比值合并算法(MRC)可以提高多波束天线在波束交叉部分的增益。上述两种方案在所形成波束内,选用最大电平接收信号,不用判别用户信号到达方向及反馈控制机构等硬件跟踪装置。 ATR研究人员提出了如图5所示的基于智能天线的软件天线概念:根据用户所处环境不同,影响系统性能的主要因素(如噪声、同信道干扰或符号间干扰)也不同,利用软件方法实现不同环境应用不同算法,比如当噪声是主要因素时,则使用多波束最大比值合并(MRC)算法,而当同信道干扰是主要因素时则使用多波束恒模算法(CMA),以此提供算法分集,利用FPGA实现实时天线配置,完成智能处理。3 美国及其他 ArrayComm公司和中国邮电电信科学研究院信威公司研制出应用于无线本地环路(WLL)智能天线系统。ArrayComm产品采用可变阵元配置,有12元和4元环形自适应阵列可供不同环境选用。在日本进行的现场实验表明,在PHS基站采用该技术可以使系统容量提高四倍。信威公司智能天线采用八阵元环形自适应阵列,射频工作于1785MHz~1805MHz,采用TDD双工方式,收发间隔10ms,接收机灵敏度最大可提高9dB。 此外,德州大学奥斯汀SDMA小组建立了一套智能天线试验环境,着手理论于实际系统相结合。加拿大McMaster大学研究开发了4元阵列天线,采用恒模(CMA)算法。国内部分大学也正在进行相关的研究。4 结 语 智能天线对提高系统容量具有巨大潜力,近年来备受关注。但是由于自适应过程实现中影响因素复杂,难于动态捕获并跟踪用户信号,再加之移动多用户及多径情况下的时空信道盲辨识也是难点,所以在移动环境中采用自适应阵列智能天线尚有困难。从目前情况看来,智能天线正逐步应用在固定无线接入系统中,以适应用户固定而无线传播环境不断变化的情况。同时,多波束天线也是一种相对易于实现的折衷方案。总之,未来移动通信系统中所用智能天线应该是基于高性能数字信号处理技术下,且不显著增加现有系统复杂度的方案折衷。