zhifp
大家都用这个怎么交啊、、、、悲剧 
在投入产出表的基础上,可以建立以下投入产出模型产品平衡模型 A x+y=x,式中A是直接消耗系数矩阵;x为各部门总产值列向量;y为最终产品列向量。 移项求逆后得:(I-A)-1y=x, 式中I为单位矩阵。 价值构成模型 ATx+v+m =x,式中,AT为A的转置矩阵;v为劳动报酬;m 为剩余产品。 移项求逆后得:(I-AT)-1(v+m )=x。 消耗系数 在投入产出原理中,消耗系数分为直接消耗系数和完全消耗系数。前者又称为投入系数、工艺系数或技术系数,用于反映国民经济的生产技术结构,一般用符号a ij表示,即纯部门j生产单位产品对纯部门i产品的消耗量,如炼一吨钢所消耗的生铁。计算公式是 式中x ij为j部门生产产品时对i部门产品的消耗量,又叫做中间流量;x j为j部门的产量。 直接消耗系数与计划统计工作中广泛使用的消耗定额基本相同,但也有一些区别。其区别表现在:①消耗定额是指生产单位产品的工艺消耗量,直接消耗系数除这种消耗外,还包括车间、厂部和公司的相应消耗;②消耗定额一般只按实物计量,而直接消耗系数除按实物计量外,还采用货币计量;③消耗定额一般是按某种产品的具体品种、型号确定的,如钢材的具体品种、型号,而直接消耗系数一般是按大类产品(如钢材)确定的。 在直接消耗系数的基础上可以计算出完全消耗系数,它是生产单位最终产品对某种总产品或中间产品的直接消耗与间接消耗之和。例如,生产一台机器除直接消耗钢材外,还要消耗电力,而发电需要设备,生产设备又要消耗钢材。生产机器通过电力发电设备对钢材的消耗,叫做间接消耗。 生产单位 k种最终产品对 i种产品的完全消耗系数(记作b ik)的计算公式是 (i,j,k=1,2,3,…,n)上式写成矩阵为B=A B+I。由此得 B=(I-A)-1完全消耗系数还有另一种计算公式(i,j,k=1,2,3,…,n) 式中c ik为生产单位k种最终产品对i种产品的完全消耗系数。上式写成矩阵为C=A+A C。由此得: C=(I-A)-1A两种完全消耗系数的关系如下: B-C=(I-A)-1-(I-A)-1A=(I-A)-1(I-A)=I由此可见,两种完全消耗系数的区别是一个单位矩阵,它的主对角线上的元素为1,其他元素为0。从经济含义上讲,最终产品是脱离生产过程的产品,不应包含在生产消耗中,应以系数C作为完全消耗系数,但系数B是计算C的基础,并可以反映最终产品与总产品之间的依存关系。
什么是投入产出法? 投入产出法,作为一种科学的方法来说,是研究经济体系(国民经济、地区经济、部门经济、公司或企业经济单位)中各个部分之间投入与产出的相互依存关系的数量分析方法。 投入产出法,是由美国经济学家瓦西里·列昂惕夫创立的。他于1936年发表了投入产出的第一篇论文《美国经济制度中投入产出的数量关系》;并于1941年发表了《美国经济结构,1919——1929》一书,详细地介绍了“投入产出分析”的基本内容;到1953年又出版了《美国经济结构研究》一书,进一步阐述了“投入产出分析”的基本原理和发展。列昂惕夫由于从事“投入产出分析”,于1973年获得第五届诺贝尔经济学奖。 列昂惕夫的“投入产出分析”曾受到二十年代苏联的计划平衡思想的影响。因为列昂惕夫曾参加了苏联二十年代中央统计局编制国民经济平衡表的工作。 按照列昂惕夫的说法,“投入产出分析”的理论基础和所使用的数学方法,主要来自于瓦尔拉斯的一般均衡模型(瓦尔拉斯在《纯粹政治经济学要义》一书中首次提出(1874年))。因此,列昂惕夫自称投入产出模型是“古典的一般均衡理论的简化方案”。 投入产出法的基本内容 编制投入产出表、建立相应的线性代数方程体系,综合分析和确定国民经济各部门之间错综复杂的联系,分析重要的宏观经济比例关系及产业结构等基本问题。 投入产出表:是指反映各种产品生产投入来源和去向的一种棋盘式表格。 投入产出模型:是指用数学形式体现投入产出表所反映的经济内容的线性代数方程组。 投入产出法的基本作用 通过编制投入产出表和模型,能够清晰地揭示国民经济各部门、产业结构之间的内在联系;特别是能够反映国民经济中各部门、各产业之间在生产过程中的直接与间接联系,以及各部门、各产业生产与分配使用、生产与消耗之间的平衡(均衡)关系。正因为如此,投入产出法又称为部门联系平衡法。此外,投入产出法还可以推广应用于各地区、国民经济各部门和各企业等类似问题的分析。当用于地区问题时,它反映的是地区内部之间的内在联系;当用于某一部门时,它反映的是该部门各类产品之间的内在联系;当用于公司或企业时,它反映的是其内部各工序之间的内在联系。 投入产出表的一般介绍 理论上,投入产出表所反映的部门之间的联系,是生产技术经济联系。因此,表中第一部分是投入产出表的核心部分,即所反映的主要是部门之间的生产技术联系,(但也反映经济联系,特别是在价值形态表的条件下,因为这时表中各元素受价格和各种结构变动的影响。 投入产出法的基本特点 1、它从国民经济是一个有机整体的观点出发,综合研究各个具体部门之间的数量关系(技术经济联系)。整体性是投入产出法最重要的特点。 2、投入产出表从生产消耗和分配使用两个方面同时反映产品在部门之间的运动过程,也就是同时反映产品的价值形成过程和使用价值的运动过程。 3、从方法的角度,它通过各系数,一方面反映在一定技术和生产组织条件下,国民经济各部门的技术经济联系;另一方面用以测定和体现社会总产品与中间产品、社会总产品与最终产品之间的数量联系。 4、数学方法和电子计算技术的结合。 投入产出法简化的表现 投入产出法是对一般均衡模型的简化,这种简化主要表现在以下两个方面: (1)投入产出法将瓦尔拉斯模型体系中不胜枚举的方程式(或函数式)和变量,简化到可以实际应用和计量的程度。即用分类合并的统计方法,将成千上万种产品及更多的生产单位合并为有限数量的产品部门或行业,使方程式和变量的数目大大减少,从而解决了实际计算的困难。 (2)在投入产出模型中省略了生产要素供给的影响。即假设生产要素的供给是相等的,这就进一步大大减少了一般均衡模型联立方程的数目。同时,还省略了价格对消费需求构成、中间产品流量以及对劳动等生产要素供给调节的影响。另外,在投入产出模型中,仍沿袭了一般均衡模型中的假设,即假设各种投入系数是固定不变的。 这样,列昂惕夫就较大地改变了瓦尔拉斯的以论证全部均衡理论为目的的模型体系,使投入产出模型成为一种以技术联系为基础、以研究经济系统中各部分之间相互依存数量关系的分析方法。同时,也使这种分析方法有了实际应用的可能