dkya178
挫折和名人从古到今,挫折与出名就是一家,没有经受挫折,就不可能出名,自然也成不了名人。 挫折分三重境界,其一:玉不琢不成器,人不学不知道。虽此重只求知,却也少不了挫折,因为人出生入死,不受挫折的人,你能说出几个?其二:非淡泊无以明志,非宁静无以致远。达到此重者非历尽千辛万苦不可,却也不最好的;其三:学以至真,行以至善,上参国家大事,下能把持家务,左能建设国家,右能造福人民,只求一真一善者方为俊杰。能为此重者才是真正的人才。 越王勾践因一着不慎,满盘皆输,为夫之弼马翁,却毫不怨言,身处异乡三年,尝尽人间之耻,后终博得吴王信任,加之,文种等人送礼于吴太宰帮勾践说美言之,吴王终放勾践家之回国也,勾践家之回国后,卧薪藏胆二十年,并听从文种、范蠡的“十年生聚,十年教训”之策,并连施计谋,终有一日,大破吴王也,抱了前仇,还成为一代英杰。 诸葛孔明儿时家中贫穷,后父母双亡,只得投奔于叔父家中,在隆中苦读诗文,叔父去世后,他过着晴耕雨读的生活。他在出山前乃为一介农夫,他出山后也不忘清贫,为刘备省下资金,招兵买马,直到他临死前,官已升为宰相,达到了一人之下万人之上的境界。成了一代俊杰,可家中却只有五亩地,近百棵果树和两间草舍,仅此而已。甚至他的儿子和妻子,还在家中过着农夫的生活。这正体现了诸葛孔明的教子有方,诸葛孔明真不愧为聪明的花身。 挫折虽是人皆有之,但是,我们这些小皇帝、小公主们,所遇的挫折可真是少了有少,许多大的挫折都让大人们代承担之,一点点小小的挫折,都会哭上一阵子。而那些学习上的挫折,就无法承担,以致学习成绩一落千丈,而后,却又无法弥补,终会成为无用之人。所以,我个人认为,应该向那些古代英才们学习。 战胜挫折,让我们成为博学广闻之人。 战胜挫折,让我们成为志趣高雅之人。 战胜挫折,让我们成为怀有赤子之心的新时代的有用之才。 让我们携手共进,战胜这些挫折,让我们成为英才,成为名人。 
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?刘辰与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是老教授却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。” 其实,这道题我们可以很快速地做出一种方法,就是:45×5=5(千米),5+18=5(千米),5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×5=5(千米),5-18=5(千米),5×2=189(千米)。所以正确答案应该是:45×5=5(千米),5+18=5(千米),5×2=261(千米)和45×5=5(千米),5-18=5(千米),5×2=189(千米)。两个答案,也就是说刘辰的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
今天,妈妈要去买灯泡。到了超市,发现超市里有两种灯泡:一种是节能灯泡,一种是普通灯泡。节能灯泡虽然开200小时只需要用一度电,比普通灯泡一度电多用170个小时,但是它一个要5元,;普通灯泡一个只要1元,比节能灯泡便宜4元,但是它30个小时就要用一度电。 妈妈问我:“考考你,如果我要买一个灯泡回家,买哪种的灯泡最划算?” 我思索了一会儿,不慌不忙地说:“可以这样算: 5/1=5 30*5=150(小时)200小时>150小时 还可以这样算: 5/1=5 200/5=40(小时)30小时<40小时 由这几步可得出结论,节能灯泡省钱。” 妈妈又问我:“很好。再想想看,还有没有别的办法来算?” 我又想了一会儿,一个字一个字地说:“可以用我这学期才学的〝百分数〞来 算。也可以这样算: 5/200*100=025*100=5 1/30*100≈033*100=3 3>5 或者这样算: 200/5*100=40*100=4000 30/1*100=30*100=3000 4000>3000 因此,也是节能灯泡便宜。。” 我和妈妈买了比较划算的节能灯泡回去了。 经过这件事,我明白了:“生活处处有数学”这个道理。
今天下午,老师照例发了一张试卷。其中有一道很难的题,我想了半天也没想出个所以然,这道题是这样的: 有一个长方体,正面和上面的两个面积的积为209平方厘米,并且长、宽、高都是质数。求它的体积。 我见了,心想:这道题还真是难啊!已知的只有两个面面积的积,要求体积还必须知道长、宽、高,而它一点也没有提示。这可怎么入手啊! 正当我急得抓耳挠腮之际,我妈妈的一个同事来了。他先教我用方程的思路去解,可是我对方程这种方法还不是很熟悉。于是,他又教我另一种方法:先列出数,再逐一排除。我们先按题目要求列出了许多数字,如:3、5、7、11等一类的质数,接着我们开始排除,然后我们发现只剩下11和19这两个数字。这时,我想:这两个数中有一个是题中长方体正面,上面公用的棱长;一个则是长方体正面,上面除以上一条外另一条 棱长(且长度都为质数)之和。于是,我开始分辩这两个数各是哪个数。 最后,我得到了结果,为374立方厘米。我的算式是:209=11×1919=2+1711×2×17=374(立方厘米) 后来,我又用我本学期学过的知识:分解质因数验算了这道题,结果一模一样。 解出这道题后,我心里比谁都高兴。我还明白了一个道理:数学充满了奥秘,等待着我们去探求。