ll8174
基本原理微量元素在各种天然物质中的含量,一般是服从对数正态分布或正态分布的,这就是应用数理统计方法确定背景值和异常下限的理论根据。因此,只有确认测区内元素含量是属于或近似于对数正态分布或正态分布时,才能用数理统计方法来确定背累值和异常下限。根据背景值的概念,当元素含量是属于或近似于对数正态分布或正态分布时,背景值就可用样本的几何平均值(xg)或算术平均值(x),众数(Mo),中位数(Me)来估计。因为几何平均值或算术平均值受极大值和极小值的影响较大,虽然众数和中位数不受极大值和极小值的影响,但当数据集中趋势不明显时,众数就求不出来,并且也随数据分组不同而异。因此,在估计背景值时,一定要考虑样本的特征,选出其最佳估计值。当含量服从对数正态分布时,计算公式为地球化学找矿方法式中: TL为对数异常下限; σ 为元素含量的对数标准离差; Co为背景值; K 为常数。当元素含量服从正态分布时,计算公式为地球化学找矿方法K 值一般可定为 1 ~ 3。K 值愈小,异常值出现的可能性愈大; K 值愈大,异常值出现的可能性愈小。例如,当 K =1 时,异常出现的概率为 9% ; 当 K =2 时,异常出现的概率为 3% ; 而当 K =3 时,异常出现的概率为 1% ,等等。K 值的选取主要是取决于测区内的成矿地质条件,还要考虑工作的目的和任务等。当测区内成矿地质条件良好,K 值应取小一些; 当成矿地质条件不好,K 值就要取大一些; 在初步普查阶段,主要是怕漏掉有找矿意义的异常,K 值要取小一些; 在详查阶段,主要是为避免混入非矿致异常,K 值就要取大一些。常用方法现以下面的实例来介绍确定背景值和异常下限的具体方法。在某铜矿区外围,采集了100 个土壤样品,Cu 分析结果及其对数值的统计结果见表7-1。如果 Cu 含量服从对数正态分布,试求出该区的背景值和异常下限。表7-1 Cu 分析结果及其对数结果(1)计算法直接计算法利用分析结果的对数值,直接求出其平均值:地球化学找矿方法式中: m 为不同分析结果的数目。本例的计算结果如下:地球化学找矿方法简化计算法这是为了突出地反映数据频率分布规律和简化运算时的计算方法。一般是按下列步骤和方法进行运算:第一步,将分析结果的对数值分成若干组。分组时,首先要根据数据本身的性质、变化范围和样本容量,以及样品分析和计算的精度,确定组数(n)和组距(l)。组数不宜过少或过多,一般以 5 ~7 组为宜,最多不能超过 15 ~20 组。要求每组平均不得少于 5 个数据,组距一般是在 lg(l/10- 6)=(1 ~ 5)之间。其次是确定分组的下界和上界,下界要小于数据中最低值; 上界要大于数据中最高值。上界与下界之差等于组距与组数之积。另外,确定上、下界时,应尽量使数据避开分组点的数值。第二步,将分组后的数据统计结果填入计算表内,其格式和内容见表7-2。表7-2 简化计算法分组后的统计结果第三步,利用下列公式求出分析结果对数值的平均值 和对数标准离差(σ):地球化学找矿方法本例计算结果为:地球化学找矿方法第四步,求背景值和异常下限:地球化学找矿方法TL= lg xg+ 2σ = 906 + 2 × 205 = 316查反对数表可得(10- 6): Co= 05; T = 70。(2)图解法第一步,将数据分组。第二步,将分组后的数据统计结果填入计算表内,其格式和内容见表7-3。表7-3 图解法分组后的数据统计结果第三步,编绘频率分布直方图,并以其绘制频率密度曲线。取一平面直角坐标系,以横坐标表示元素含量对数值(lgxi),并按此例标出下界、各分组点和上界。再以组距为底边,画一系列矩形,以矩形面积表示各组的频率(全部矩形面积之和为 100%),就得到频率分布直方图,再以其绘出频率密度曲线,如图 7 8所示。纵坐标表示的是频率分布密度,也就是频率与组距的比值。第四步,利用直方图求出众数对数值,再利用频率密度曲线求出含量对数标准离差。在直方图的最高的矩形内,连接 AC 和 BD,二者的交点所对应的横坐标就是众数对数值,再取频率密度曲线极大值(p)的 6 倍,作一平行横坐标轴的直线,其与频率密度曲线左翼的交点所对应的横坐标为 lgMo- σ,而与右翼的交点所对应的横坐标为 lgMo+ σ。则可求出含量对数标准离差。本例,求得 lgMo= 91,σ = 20。第五步,求出背景值和异常下限:取 Co= Mo,K =2,则TL= lgCo+ Kσ = 91 + 2 × 2 = 31查反对数表可得(10- 6): Co= 13; T = 42。图7-8 众数(Mo)与标准离差(σ)图解法示意图除上述图解法外,还可以利用累积频率图求出中位数对数值和含量对数标准离差,以中位数估计背景值,再求出异常下限。其步骤是: 第一步和第二步同上。第三步是绘制累积频率图。取一平面直角坐标系,以横坐标表示含量对数值,以纵坐标表示累积频率。再用组上限为横坐标,用该组对应的累积频率为纵坐标,依次绘出各坐标点的位置,最后用圆滑曲线将各点连接起来,就得到频率分布曲线(见图7-9)。如果采用概率格纸按上述方法绘图,则频率分布曲线展为直线(见图7-10)。第四步是利用频率分布曲线求出lgMe和 σ。频率分布曲线上累积频率为 50% 的点,所对应的横坐标为 lgMe,而累积频率为 9% ,1% 的点,所对应的横坐标为 lgMe- σ,lgMe+ σ。故可求出 σ。在图7 9和图 7 10 上求得:lgMe= 91; σ = 20。第五步是求出背景值和异常下限。本例求得(10- 6):Co= 13; T = 42。图7-9 中位数与标准离差图解法示意图图7-10 中位数与标准离差图解法示意图 
抽样平均误差是测定抽样误差的基本指标。它是随机抽样可变总体平均数(抽样平均数的所有可能值)与全及平均数之间离差这个指标反映抽样平均数的所有可能值对全及平均数的平均离散程度,即反映误差平均值的大小 分布数列是统计整理的一种重要形式,是统计描述和统计分析的一种重要方法,它可以说明总体的分布特征、内部结构,并可据以研究总体某一标志值的平均水平及其变动的规律性。
抽样平均误差是测定抽样误差的基本指标。它是随机抽样可变总体平均数(抽样平均数的所有可能值)与全及平均数之间离差这个指标反映抽样平均数的所有可能值对全及平均数的平均离散程度,即反映误差平均值的大小 分布数列是统计整理的一种重要形式,是统计描述和统计分析的一种重要方法,它可以说明总体的分布特征、内部结构,并可据以研究总体某一标志值的平均水平及其变动的规律性。 1、统计学:是运用数理统计的基本原理和方法研究预防医学和卫生事业管理中资料的收集,整理和分析的一门应用科学。具体地讲,是按照设计方案去收集、整理、分析数据,并对数据结果进行解释,从而做出比较正确的结论。 2、总体:是根据研究目的确定同质的所有观察单位某种变量的集合。 3、变异:同一性质的事物,其观察值(变量值)之间的差异。 4、抽样研究:从所研究的总体中随机抽取一部分有代表性的样本进行研究,用样本指标推论总体,最终达到了解总体的目的。这种用样本指标推论总体参数的方法称为抽样研究。 5、统计描述:用统计图表或计算统计指标的方法表达一个特定群体的某种现象或特征。 6、统计推断:根据样本资料的特性对总体的特性作估计或推论的方法称统计推断,常用方法是参数估计和假设检验。 7、概率:是指某事件出现可能性大小的度量,以符号P表示。 8、医学参考值范围:参考值范围又称正常值范围。医学上常把包括绝大多数人某项指标的数值范围称为该指标的参考值范围。 9、正态分布规律:实际工作中,经常需要了解正态曲线下横轴上的一定区域的面积占总面积的百分数,用以估计该区间的观察例数占总例数的百分数,或变量值落在该区间的频数或概率。 10、可比性:是指对研究结果有影响的非处理因素在各处理组之间尽可能相 同或相近。 11、动态数列:是一系列按时间顺序排列起来的统计指标,包括绝对数、相对数或平均数,用以说明事物在时间上的变化和发展趋势。 12、抽样误差:在同一总体中随机抽取样本含量相同的若干样本时,样本指标之间的差异以及样本指标与总体指标的差异。 13、标准误:表示样本均数间变异程度。 14、率的抽样误差:抽样过程中产生的同一总体中均数之间的差异称为均数的抽样误差,率之间的差异称为率的抽样误差。 15、参数估计:是指用样本指标(称为统计量)估计总体指标(称为参数)。 16、可信区间:总体参数的所在范围通常称为参数的可信区间或置信区间,即该区间以一定的概率(如95%或99%)包含总体参数。 17、I型错误:拒绝了实际撒谎能够成立的H0,这类“弃真”的错误称为I型错误。 18、II型错误:接受了实际撒谎能够不成立的H0,这类“存伪”的错误称为II型错误。 19、检验效能:1-b称为检验效能又称为把握度。它的含义是:当两总体确实有差别时,按规定的检验水准a,能够发现两总体间差别的能力。 20、四格表资料:两个样本率的资料又称为四格表资料,在四格表资料中两个样本的实际发生频数和实际未发生频数为基本数据,其他数据均可由这四个基本数据推算出来。 21、列联表资料:对同一样本资料按其两个无序分类变量(行变量和列变量)归纳成双向交叉排列的统计表,其行变量可分为R类,列变量可分为C类,这种表称为R*C列联表。 22、参数检验:是一种要求样本来自总体分布型是已知的(如正态分布),在这种假设的基础上,对总体参数(如总体均数)进行统计推断的假设检验。 23、非参数检验:是一种不依赖总体分布类型,也不对总体参数(如总体均数)进行统计推断的假设检验。 24、秩次:即通常意义上的序号,实际上就是将观察值按顺序由小到大排列,并用序号代替了变量值本身。 25、直线相关系数:它是说明具有直线关系的两个变量间,相关关系的密切程度与相关方向的统计指标。相关系数没有单位,取值范围是-1〈=r〈=1,r的绝对值越大表明两变量的关系越密切。 26、完全负相关:这是一种极为特殊的负相关关系,从散点图上可以看出,由x与y构成的散点完全分布在一条直线上,x增加,y相应减少,算得的相关系数r=-1。 27、正相关:它是说明具有直线关系的两个变量间,存在有正的相关方向,即当x增加时,y有相应增大的趋势,所算得的相关系数r为正值。 28、等级相关:是对等级数据作相关分析,它又称为秩相关,是一种非参数统计方法。 29、评价:是通过对某些标准来判断观测结果,并赋予这种结果以一定的意义和价值的过程。 30、综合评价:是指人们根据不同的评价目的,选择相应的评价形式,据此选择多个因素或指标,并通过一定的数学模型,将多个评价因素或指标转化为能反映评价对象总体特征的信息。 31、优序法:为了比较某几个事物或方案的优劣,在选定各项评价指标后,将待评价的对象或方案就各项评价指标的测量值大小分别排列,并分别对各序号(等级)以相应的评分值即优序数,然后综合诸评价指标,分别计算评价对象的总赋优序数,并按总赋优序大小评定其优顺序的方法即优序法。 32、Topsis:Topsis法常用于系统工程中有限方案多目标决策分析,此外,也可用于效益评价、卫生决策和卫生事业管理等多领域。 33、根本死因:WHO规定,根本死因是指:“(a)引起直接导致死亡的一系列病态事件的那些疾病或损伤,或者(b)造成致命损伤的事故或暴力的情况。” 34、卫生服务需要:是指人们因疾病影响健康,引起人体正常活动的障碍,实际应当接受各种卫生服务的需要(如预防保健、治疗、康复)。 35、卫生服务调查统计:是卫生统计的主要内容之一,卫生服务调查统计是从卫生服务资料的设计、收集、整理、分析的角度,来阐述卫生服务研究的特点、研究方法和注意事项,以便使卫生服务研究服务更具有科学性。 36、卫生服务调查:是指对卫生服务状况、人群健康的危险因素、人群卫生服务的需求和利用、卫生服务资源的分配和利用所进行的一种社会调查。 37、统计表:是以表格的形式列出统计指标,它是对资料进行统计描述时的一种常用手段。 38、统计图:是以各种几何图形(如点、线、面或立体)显示数据的大小、升降、分布以及关系等,它也是对资料进行统计描述时的一种常用手段。 39、均数的抽样误差:统计学上,对于抽样过程中产生的同一总体中均数之间的差异称为均数的抽样误差。
是2篇?各一份还是什么? 概率论与数理统计”是理工科大学生的一门必修课程,由于该学科与生活实践和科学试验有着紧密的联系,是许多新发展的前沿学科(如控制论、信息论、可靠性理论、人工智能等)的基础,因此学好这一学科是十分重要的。� “概率论与数理统计”的学习应注重的是概念的理解,而这正是广大学生所疏忽的,在复习时几乎有近一半以上学生对“什么是随机变量”、“为什么要引进随机变量”仍说不清楚。对于涉及随机变量的独立,不相关等概念更是无从着手,这一方面是因为高等数学处理的是“确定”的事件。如函数y=f(x),当x确定后y有确定的值与之对应。而概率论中随机变量X在抽样前是不确定的,我们只能由随机试验确定它落在某一区域中的概率,要建立用“不确定性”的思维方法往往比较困难,如果套用确定性的思维方法就会出错。由于基本概念没有搞懂,即使是十分简单的题目也难以得分。从而造成低分多的现象。另一方面由于概率论中涉及的计算技巧不多,除了古典概型,几何概型和计算二维随机变量的函数分布时如何确定积分上、下限有一些计算的难点,其他的只是数值或者积分、导数的计算。因而如果概念清楚,那么解题往往很顺利且易得到正确答案,这正是高分较多的原因。� 根据上面分析,启示我们不能把高等数学的学习方法照搬到“概率统计”的学习上来,而应按照概率统计自身的特点提出学习方法,才能取得“事半功倍”的效果。下面我们分别对“概率论”和“数理统计”的学习方法提出一些建议。�一、 学习“概率论”要注意以下几个要点 在学习“概率论”的过程中要抓住对概念的引入和背景的理解,例如为什么要引进“随机变量”这一概念。这实际上是一个抽象过程。正如小学生最初学数学时总是一个苹果加2个苹果等于3个苹果,然后抽象为1+2=对于具体的随机试验中的具体随机事件,可以计算其概率,但这毕竟是局部的,孤立的,能否将不同随机试验的不同样本空间予以统一,并对整个随机试验进行刻画?随机变量X(即从样本空间到实轴的单值实函数)的引进使原先不同随机试验的随机事件的概率都可转化为随机变量落在某一实数集合B的概率,不同的随机试验可由不同的随机变量来刻画。 此外若对一切实数集合B,知道P(X∈B)。 那么随机试验的任一随机事件的概率也就完全确定了。所以我们只须求出随机变量X的分布P(X∈B)。 就对随机试验进行了全面的刻画。它的研究成了概率论的研究中心课题。故而随机变量的引入是概率论发展历史中的一个重要里程碑。类似地,概率公理化定义的引进,分布函数、离散型和连续型随机变量的分类,随机变量的数学特征等概念的引进都有明确的背景,在学习中要深入理解体会。� 在学习“概率论”过程中对于引入概念的内涵和相互间的联系和差异要仔细推敲,例如随机变量概念的内涵有哪些意义:它是一个从样本空间到实轴的单值实函数X(w),但它不同于一般的函数,首先它的定义域是样本空间,不同随机试验有不同的样本空间。而它的取值是不确定的,随着试验结果的不同可取不同值,但是它取某一区间的概率又能根据随机试验予以确定,而我们关心的通常只是它的取值范围,即对于实轴上任一B,计算概率P(X∈B),即随机变量X的分布。只有理解了随机变量的内涵,下面的概念如分布函数等等才能真正理解。又如随机事件的互不相容和相互独立两个概念通常会混淆,前者是事件的运算性质,后者是事件的概率性质,但它们又有一定联系,如果P(A)。P(B)>0,则A,B独立则一定相容。类似地,如随机变量的独立和不相关等概念的联系与差异一定要真正搞懂。� 搞懂了概率论中的各个概念,一般具体的计算都是不难的,如F(x)=P(X≤x),EX,DX等按定义都易求得。计算中的难点有古典概型和几何概型的概率计算,二维随机变量的边缘分布fx(x)=∫-∞∞ f(x,y)dy,事件B的概率P((X,Y)∈B)=∫∫Bf(x,y)dxdy,卷积公式等的计算,它们形式上很简单,但是由于f(x,y)通常是分段函数,真正的积分限并不再是(-∞,∞)或B,这时如何正确确定事实上的积分限就成了正确解题的关键,要切实掌握。� 概率论中也有许多习题,在解题过程中不要为解题而解题,而应理解题目所涉及的概念及解题的目的,至于具体计算中的某些技巧基本上在高等数学中都已学过。因此概率论学习的关键不在于做许多习题,而要把精力放在理解不同题型涉及的概念及解题的思路上去。这样往往能“事半功倍”。二、 学习“数理统计”要注意以下几个要点� 由于数理统计是一门实用性极强的学科,在学习中要紧扣它的实际背景,理解统计方法的直观含义。了解数理统计能解决那些实际问题。对如何处理抽样数据,并根据处理的结果作出合理的统计推断,该结论的可靠性有多少要有一个总体的思维框架,这样,学起来就不会枯燥而且容易记忆。例如估计未知分布的数学期望,就要考虑到① 如何寻求合适的估计量的途径,②如何比较多个估计量的优劣?这样,针对①按不同的统计思想可推出矩估计和极大似然估计,而针对②又可分为无偏估计、有效估计、相合估计,因为不同的估计名称有着不同的含义,一个具体估计量可以满足上面的每一个,也可能不满足。掌握了寻求估计的统计思想,具体寻求估计的步骤往往是“套路子”的,并不困难,然而如果没有从根本上理解,仅死背套路子往往会出现各种错误。� 许多同学在学习数理统计过程中往往抱怨公式太多,置信区间,假设检验表格多而且记不住。事实上概括起来只有八个公式需要记忆,而且它们之间有着紧密联系,并不难记,而区间估计和假设检验中只是这八个公式的不同运用而已,关键在于理解区间估计和假设检验的统计意义,在理解基础上灵活运用这八个公式,完全没有必要死记硬背。