lutu2018
标准差能反映一个数据集的离散程度。两个班的学生分数,标准差小的说明全班同学的分数和平均分数的距离比较小,标准差大的说明全班同学的成绩和平均分数差的比较大。标砖差的计算方法是:所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一,即变异数),再把所得值开根号,所得之数就是这组数据的标准差。标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。扩展资料方差由于离均差的平方和与样本个数有关,只能反应相同样本的离散度,而实际工作中做比较很难做到相同的样本,因此为了消除样本个数的影响,增加可比性,将离均差的平方和求平均值,这就是我们所说的方差成了评价离散度的较好指标。极差最直接也是最简单的方法,即最大值-最小值(也就是极差)来评价一组数据的离散度。这一方法在日常生活中最为常见,比如比赛中去掉最高最低分就是极差的具体应用。离均差平方和由于误差的不可控性,因此只由两个数据来评判一组数据是不科学的。所以人们在要求更高的领域不使用极差来评判。其实,离散度就是数据偏离平均值的程度。因此将数据与均值之差(我们叫它离均差)加起来就能反映出一个准确的离散程度。和越大离散度也就越大。参考资料:百度百科-标准差 
方差方差和标准差:样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。数学上一般用E{[X-E(X)]^2}来度量随机变量X与其均值E(X)的偏离程度,称为X的方差。定义设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X)或DX。即D(X)=E{[X-E(X)]^2},而σ(X)=D(X)^5(与X有相同的量纲)称为标准差或均方差。由方差的定义可以得到以下常用计算公式:D(X)=E(X^2)-[E(X)]^2方差的几个重要性质(设一下各个方差均存在)。(1)设c是常数,则D(c)=0。(2)设X是随机变量,c是常数,则有D(cX)=c^2D(X)。(3)设X,Y是两个相互独立的随机变量,则D(X+Y)=D(X)+D(Y)。(4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。标准差 标准差(Standard Deviation) 各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。 这两组的平均数都是70,但A组的标准差为08分,B组的标准差为16分,说明A组学生之间的差距要比B组学生之间的差距大得多。
标准差能反映一个数据集的离散程度。两个班的学生分数,标准差小的说明全班同学的分数和平均分数的距离比较小,标准差大的说明全班同学的成绩和平均分数差的比较大。标砖差的计算方法是:所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一,即变异数),再把所得值开根号,所得之数就是这组数据的标准差。标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。扩展资料:标准差的运用1、基金衡量基金波动程度的工具就是标准差(StandardDeviation)。标准差是指基金可能的变动程度。标准差越大,基金未来净值可能变动的程度就越大,稳定度就越小,风险就越高。2、股市分析股票价格的波动是股票市场风险的表现,因此股票市场风险分析就是对股票市场价格波动进行分析。波动性代表了未来价格取值的不确定性,这种不确定性一般用方差或标准差来刻画。3、企业债券企业债务性资金和权益性资金完全正相关,即相关系数pDE为1。企业外部投资者获得的期望收益率为E(rp)=wDE(rD)+wEE(rE),风险标准差为σ=wDσD+wEσE。参考资料:百度百科- 标准差
标准差(standarddeviation)样本内各变数变异程度的度量。由样本计算标准差的公式为:为求和符号。从上可知标准差是反映样本内各个变数与平均数差异大小的一个统计参数。从S可了解样本内各变数的变异程度及样本平均数代表性的可反之亦然。此外,在生物统计中,还用样本标准差来估计总体标准差。在实践中通常用下式计算样本标准差S。举例:调查某小组18名学生的身高(cm),其数据为:173,165,154,180,175,170,166,162,158,169,160,174,179,177,168,157,160,163。经计算得∑x=3010,∑x2=504408,数的次数分布作出估计,如观察数据属常态分布(正态分布),于是有:在的范围内;变数的个数约有46%落在x±2S的范围内;变数的个数约有2222±9303(2919~1525)厘米的范围内;约有95%的学生身高在2222±2×9303(3616~0828)厘米的范围差是分析数量性状最常用的两个参数。
标准差是 反应多组数据之间稳定值差异的,与样本多少没有关系,有多少样本就反应多少样本之间的数值的稳定性。所以,只是反应稳定性而已。下一个数字不是 3加减26的范畴而是说标准差越大 数组偏差越不稳定,例如你的物理实验结果的标准差太大,超出实验结果允许的误差范围,那么说明你的实验失败了。理论上,合适合理 的样本数是减小标准差的方法,但是标准差的大小没有物理意义,因为他是用来评价一组数据的稳定性的辅助数据。不是样本越多标准差越小的,而是越能反映稳定性的真实效果,但是样本太少,会导致标准差失真。在标准差的应用上还有双重标准差。就是计算标准差的标准差。双重标准差无限趋近于0的时候,就是你的最真实标准差。五个一般不够的,最简单的实验也基本在10个左右。 应用上主要用在风险资产评估: 金融风险评估,各种实验等最后举个最简单例子:A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为078分,B组的标准差为16分,说明A组学生之间的差距要比B组学生之间的差距大得多。