zhujiajun0
【容易忽略的答案】大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×5=5(千米),5+18=5(千米),5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×5=5(千米),5-18=5(千米),5×2=189(千米)。所以正确答案应该是:45×5=5(千米),5+18=5(千米),5×2=261(千米)和45×5=5(千米),5-18=5(千米),5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 
数学小论文——奇妙的数灵数9这家伙看起来很普通是吗?但事实上9是最为特殊的数字之一,因为它是最小的奇数合数,你可一下有趣的实验体会9的奇妙。任意选择一个两位数,个位与是为必须不同,讲其重新组合之后,较大的数减去较小的,得到的两位数再循环上面的步骤,直到出现个位数为止,而这个个位数必定是例数字2992-29=6063-36=2772-27=4554-45=9毫无疑问,无论你选择的是谁,9一定会躲在最后等着你1089也不是个善类人去一个三位数,首末不同,将其重新组合之后,较大的数减去较小的,所得结果再与它的首末颠倒数字相加,所得必是1089例数字375573-375=198198+891=1089要注意的是,如果你恰好选了诸如645这样的书,那么645-546=99貌似上述结论就不成立了,但若把99看作099,则990+099=1089,瞧!阴魂不散额家伙。*输入123456798,乘以9及9的倍数。结果如何呢?12345679*9=111111111(9个1)12345679*18=222222222(9个2)12345679*27=333333333(9个3)12345679*36=444444444(9个4)12345679*45=555555555(9个5)12345679*54=666666666(9个6)12345679*63=777777777(9个7)12345679*72=888888888(9个8)12345679*81=999999999(9个9)