286123264
小学教育类的论文有很多可以选择的方向,我们 可以把相关主题分为几个类别,例如: 一、关于教育内容的论文题目1、外语应该成为学校的必修课吗? 2、应该教学生打字而不是写字吗? 3、教师是否应该对民族英雄的负面性格、行为或习惯保持沉默?二、关于国家教育政策的论文题目 1、家庭教育应该由国家控制吗? 2、是否应该定期测试教师的水平? 3、学校应该为学生的不良行为负责吗? 三、关于学校法律和政策的论文题目 1、是否应该对网络欺凌进行监管? 2、教师或保安人员应该带武器吗? 3、学校应该禁止公开祈祷或讨论宗教吗? 
参考1 邓小荣.高中数学的体验教学法〔J〕.广西师范学院学报,2003(8)2 黄红.浅谈高中数学概念的教学方法〔J〕.广西右江民族师专学报,2003(6)3 胡中双.浅谈高中数学教学中创造性思维能力的培养〔J〕.湖南教育学院学报,2001(7)4 竺仕芳.激发兴趣,走出误区———综合高中数学教学探索〔J〕.宁波教育学院学报,2003(4)5 杨培谊,于鸿.高中数学解题方法与技巧〔M〕.北京:北京学院出版社,19931、《计算机教育应用与教育革新——’97全球华人计算机教育应用大会论 文集》李克东 何克抗 主编 北京师范大学出版社 1997 2、《教育中的计算机》 全国中小学计算机教育研究中心(北京部)1998 3、林建详编:《CAI的理论与实践——迎接21世纪的挑战》 全国CBE 学会第六次学术会议论文集 1993 北京 北京大学出版社。 [1] 参见D A Drennen, , A Modern Introduction to Metaphysics, New York: Free Press of Glencoe, 1962。 此书是一本从巴门尼德到怀特海的著作选集,按形而上学中的问题分类。 [2] 参见R G Collingwood, An Essay on Metaphysics, Oxford: Clarendon Press, 1940。此书正文的第一句话是:“要讨论形而上学,唯一正派的、当然也是聪明的方式就是从亚里士多德开始。” [3] 《形而上学》,982b14-28。 [4] 引自《古希腊悲剧经典》,罗念生译,北京:作家出版社,1998年,49页。 [5] 亚里士多德:《形而上学》,985b-986a,昊寿彭译,北京:商务印书馆,1981年,12-13页。 [6] 参见若-弗·马泰伊:《毕达哥拉斯和毕达哥拉斯学派》,管震湖译,北京:商务印书馆,1997年,90页以下;《古希腊哲学》,苗力田主编,中国人民大学出版社,1989年,78页;汪子嵩等:《希腊哲学史》第1卷,人民出版社,1997年,290页以下。 [7] 《古希腊哲学》,78页。 [8] 《毕达哥拉斯和毕达哥拉斯学派》,115页以下。 [9] 同上书,125页。译文稍有改动。 [10] 《希腊哲学史》第1卷,290页。 [11] 亚里士多德:《论天》,引自〈希腊哲学史〉第1卷,283页。 [12] 《毕达哥拉斯与毕达哥拉斯学派》,107页以下。 [13] 巴门尼德的话可以简略地表述为:“是是,它不能不是”,因为“存在”与“是”在古希腊和大多数西方语言中从根子上是一个词,如英文之“being”与“be”。 相关性:毕业论文,免费毕业论文,大学毕业论文,毕业论文模板 够不够 我在给你找
一、一题多问 一题多问是就相同条件,启发学生通过联想,提出不同问题,以此促进学生思维的灵活性。 例如:三年级有女生45人,比男生少1/10。 问:(1)男生有多少人? (2)男生比女生多几分之几? (3)男生占全年级总人数的几分之几? 二、一题多变 这种练习,有助于启发引导学生分析比较其异同点,抓住问题的实质,加深对本质特征的认识,从而更好地区分事物的各种因素,形成正确的认识,进而更深刻地理解所学知识,促进和增强学生思维的深刻性。一般可以采用“纵变”和“横变”两种形式。 1、“纵变”:使学生对某一数量关系的发展有一个清晰的认识。 例:某工厂原来每天生产40台机器,现在每天生产50台机器,是原来的百分之几? 变化题: (1) 某工厂原来每天生产40台机器,现在每天生产50台机器,比原来增产了百分之几? (2) 某工厂现在每天生产50台机器,比原来增产了25%,原来每天生产多少台机器? (3) 某工厂原来每天生产40台机器,现在比原来增产了25%,现在每天生产多少台机器? 2、“横变”:训练学生对各种数量关系的综合运用。 例:粮店要运进一批大米,已经运进12吨,相当于要运进大米总数的75%。粮店要运进大米多少吨? 变化题: (1) 粮店要运进大米16吨,用4辆汽车运一次,每辆运5吨,还剩下多少吨大米没有运到? (2) 粮店要运进大米16吨,先用4辆汽车运一次,每辆运5吨,剩下的改用大车运,每辆大车运6吨。一次运完,需要大车多少辆? (3) 粮店要运进大米16吨,先用4辆汽车运一次,每辆运5吨,剩下的改用大车运,每辆大车比汽车少运9吨。一次运完,需要大车多少辆? (4) 粮店要运进大米16吨,先用汽车运进75%;剩下的改用大车运,每辆大车运的吨数是汽车已运吨数的1/24。一次运完,需要大车多少辆? (5) 粮店要运进面粉14吨,是运进大米吨数的7/8。这些面粉和大米,用4辆汽车运,每辆运5吨,需要运几次? 这样,从“纵”、“横”两个方面进行练习,就不断加深了学生对数量关系的理解,使学生的思维从具体不断地向抽象过渡。发展了逻辑思维,提高了学生分析、解答应用题的能力。 三、一题多解 一题多解主要指根据实际情况,从不同角度启发诱导学生得到新的解题思路和解题方法,沟通解与解之间的内在联系,选出最佳解题方案,从而训练了思维的灵活性。 例1、某班有学生50人,男生是女生的2/3,女生有多少人? (1)用分数方法解:50÷(1+2/3)=30(人) (2)用方程方法解:X+2/3X=50 或X(1+2/3)=50X=30 (3)用归一方法解:50÷(2+3)×3=30(人) (4)用按比例分配方法解:50×3/(3+2)=30(人) 例2、某工厂计划10天制造200台机器。结果2 天就完成了计划的25%。照这样计算,可以提前几天完成任务? 有以下几种解法: (1)10-200÷(200×25%÷2)=2(天) (2)把计划产量看作“1”。 Ⅰ、10-1÷(25%÷2)=2(天) Ⅱ、10-2×(1÷25%)=2(天) Ⅲ、10-(1-25%)÷(25%÷2)-2=2(天) (3)把实际天数看作“1”。 10-2÷25%=2(天) 这样,培养学生从多种角度,不同方向去分析、思考问题,克服了思维定势的不利因素,开拓思路,运用知识的迁移,使学生能正确、灵活地解答千变万化的应用题。能做到大纲要求的“根据应用题的具体情况,灵活运用解答方法。” 通过以上形式多样的练习,不仅调动了学生浓厚的学习兴趣,更重要的是沟通了知识间的内在联系,使知识深化,而且可以达到以点带面,举一反三,触类旁通的目的。