期刊问答网 论文发表 期刊发表 期刊问答

惯性力学论文题目有哪些类型

  • 回答数

    7

  • 浏览数

    211

rain00
首页 > 期刊问答网 > 期刊问答 > 惯性力学论文题目有哪些类型

7个回答 默认排序1
  • 默认排序
  • 按时间排序

行拥肺p

已采纳
惯性的物理论文参考题目: 惯性质量与引力质量相等的实验验证。 谈谈伽利略的相对性原理。 惯性系与非惯性系中物理学规律之间联系的讨论。 生活中的惯性力,科里奥利力,举例说明自然界中的科里奥利效应。 谈谈角动量守恒及其应用。 质心参照系的利用。

惯性力学论文题目有哪些类型

350 评论(13)

zhang98lp

P= W:功 t:时间 压强p (Pa) P= F:压力 S:受力面积 液体压强p (Pa) P=ρgh ρ:液体的密度 h:深度(从液面到所求点 的竖直距离) 热量Q (J) Q=cm△t c:物质的比热容 m:质量 △t:温度的变化值 燃料燃烧放出 的热量Q(J) Q=mq m:质量 q:热值 常用的物理公式与重要知识点 一.物理公式 单位) 公式 备注 公式的变形 串联电路 电流I(A) I=I1=I2=…… 电流处处相等 串联电路 电压U(V) U=U1+U2+…… 串联电路起 分压作用 串联电路 电阻R(Ω) R=R1+R2+…… 并联电路 电流I(A) I=I1+I2+…… 干路电流等于各 支路电流之和(分流) 并联电路 电压U(V) U=U1=U2=…… 并联电路 电阻R(Ω) = + +…… 欧姆定律 I= 电路中的电流与电压 成正比,与电阻成反比 电流定义式 I= Q:电荷量(库仑) t:时间(S) 电功W (J) W=UIt=Pt U:电压 I:电流 t:时间 P:电功率 电功率 P=UI=I2R=U2/R U:电压 I:电流 R:电阻 电磁波波速与波 长、频率的关系 C=λν C: 物理量 单位 公式 名称 符号 名称 符号 质量 m 千克 kg m=pv 温度 t 摄氏度 °C 速度 v 米/秒 m/s v=s/t 密度 p 千克/米³ kg/m³ p=m/v 力(重力) F 牛顿(牛) N G=mg 压强 P 帕斯卡(帕) Pa P=F/S 功 W 焦耳(焦) J W=Fs 功率 P 瓦特(瓦) w P=W/t 电流 I 安培(安) A I=U/R 电压 U 伏特(伏) V U=IR 电阻 R 欧姆(欧) R=U/I 电功 W 焦耳(焦) J W=UIt 电功率 P 瓦特(瓦) w P=W/t=UI 热量 Q 焦耳(焦) J Q=cm(t-t°) 比热 c 焦/(千克°C) J/(kg°C) 真空中光速 3×108米/秒 g 8牛顿/千克 15°C空气中声速 340米/秒 初中物理公式汇编 【力 学 部 分】 1、速度:V=S/t 2、重力:G=mg 3、密度:ρ=m/V 4、压强:p=F/S 5、液体压强:p=ρgh 6、浮力: (1)、F浮=F’-F (压力差) (2)、F浮=G-F (视重力) (3)、F浮=G (漂浮、悬浮) (4)、阿基米德原理:F浮=G排=ρ液gV排 7、杠杆平衡条件:F1 L1=F2 L2 8、理想斜面:F/G=h/L 9、理想滑轮:F=G/n 10、实际滑轮:F=(G+G动)/ n (竖直方向) 11、功:W=FS=Gh (把物体举高) 12、功率:P=W/t=FV 13、功的原理:W手=W机 14、实际机械:W总=W有+W额外 15、机械效率: η=W有/W总 16、滑轮组效率: (1)、η=G/ nF(竖直方向) (2)、η=G/(G+G动) (竖直方向不计摩擦) (3)、η=f / nF (水平方向) 【热 学 部 分】 1、吸热:Q吸=Cm(t-t0)=CmΔt 2、放热:Q放=Cm(t0-t)=CmΔt 3、热值:q=Q/m 4、炉子和热机的效率: η=Q有效利用/Q燃料 5、热平衡方程:Q放=Q吸 6、热力学温度:T=t+273K 【电 学 部 分】 1、电流强度:I=Q电量/t 2、电阻:R=ρL/S 3、欧姆定律:I=U/R 4、焦耳定律: (1)、Q=I2Rt普适公式) (2)、Q=UIt=Pt=UQ电量=U2t/R (纯电阻公式) 5、串联电路: (1)、I=I1=I2 (2)、U=U1+U2 (3)、R=R1+R2 (4)、U1/U2=R1/R2 (分压公式) (5)、P1/P2=R1/R2 6、并联电路: (1)、I=I1+I2 (2)、U=U1=U2 (3)、1/R=1/R1+1/R2 [ R=R1R2/(R1+R2)] (4)、I1/I2=R2/R1(分流公式) (5)、P1/P2=R2/R1 7定值电阻: (1)、I1/I2=U1/U2 (2)、P1/P2=I12/I22 (3)、P1/P2=U12/U22 8电功: (1)、W=UIt=Pt=UQ (普适公式) (2)、W=I2Rt=U2t/R (纯电阻公式) 9电功率: (1)、P=W/t=UI (普适公式) (2)、P=I2R=U2/R (纯电阻公式) 【常 用 物 理 量】 1、光速:C=3×108m/s (真空中) 2、声速:V=340m/s (15℃) 3、人耳区分回声:≥0.1s 4、重力加速度:g=9.8N/kg≈10N/kg 5、标准大气压值: 760毫米水银柱高=1.01×105Pa 6、水的密度:ρ=1.0×103kg/m3 7、水的凝固点:0℃ 8、水的沸点:100℃ 9、水的比热容: C=4.2×103J/(kg•℃) 10、元电荷:e=1.6×10-19C 11、一节干电池电压:1.5V 12、一节铅蓄电池电压:2V 13、对于人体的安全电压:≤36V(不高于36V) 14、动力电路的电压:380V 15、家庭电路电压:220V 16、单位换算: (1)、1m/s=3.6km/h (2)、1g/cm3 =103kg/m3 (3)、1kw•h=3.6×106J 作者: jt砺剑 2007-2-28 20:06 回复此发言 ________________________________________ 6 回复:初中物理公式 初中物理公式汇编 【力 学 部 分】 1、速度:V=S/t 2、重力:G=mg 3、密度:ρ=m/V 4、压强:p=F/S 5、液体压强:p=ρgh 6、浮力: (1)、F浮=F’-F (压力差) (2)、F浮=G-F (视重力) (3)、F浮=G (漂浮、悬浮) (4)、阿基米德原理:F浮=G排=ρ液gV排 7、杠杆平衡条件:F1 L1=F2 L2 8、理想斜面:F/G=h/L 9、理想滑轮:F=G/n 10、实际滑轮:F=(G+G动)/ n (竖直方向) 11、功:W=FS=Gh (把物体举高) 12、功率:P=W/t=FV 13、功的原理:W手=W机 14、实际机械:W总=W有+W额外 15、机械效率: η=W有/W总 16、滑轮组效率: (1)、η=G/ nF(竖直方向) (2)、η=G/(G+G动) (竖直方向不计摩擦) (3)、η=f / nF (水平方向) 【热 学 部 分】 1、吸热:Q吸=Cm(t-t0)=CmΔt 2、放热:Q放=Cm(t0-t)=CmΔt 3、热值:q=Q/m 4、炉子和热机的效率: η=Q有效利用/Q燃料 5、热平衡方程:Q放=Q吸 6、热力学温度:T=t+273K 【电 学 部 分】 1、电流强度:I=Q电量/t 2、电阻:R=ρL/S 3、欧姆定律:I=U/R 4、焦耳定律: (1)、Q=I2Rt普适公式) (2)、Q=UIt=Pt=UQ电量=U2t/R (纯电阻公式) 5、串联电路: (1)、I=I1=I2 (2)、U=U1+U2 (3)、R=R1+R2 (4)、U1/U2=R1/R2 (分压公式) (5)、P1/P2=R1/R2 6、并联电路: (1)、I=I1+I2 (2)、U=U1=U2 (3)、1/R=1/R1+1/R2 [ R=R1R2/(R1+R2)] (4)、I1/I2=R2/R1(分流公式) (5)、P1/P2=R2/R1 7定值电阻: (1)、I1/I2=U1/U2 (2)、P1/P2=I12/I22 (3)、P1/P2=U12/U22 8电功: (1)、W=UIt=Pt=UQ (普适公式) (2)、W=I2Rt=U2t/R (纯电阻公式) 9电功率: (1)、P=W/t=UI (普适公式) (2)、P=I2R=U2/R (纯电阻公式) 【常 用 物 理 量】 1、光速:C=3×108m/s (真空中) 2、声速:V=340m/s (15℃) 3、人耳区分回声:≥0.1s 4、重力加速度:g=9.8N/kg≈10N/kg 5、标准大气压值: 760毫米水银柱高=1.01×105Pa 6、水的密度:ρ=1.0×103kg/m3 7、水的凝固点:0℃ 8、水的沸点:100℃ 9、水的比热容: C=4.2×103J/(kg•℃) 10、元电荷:e=1.6×10-19C 11、一节干电池电压:1.5V 12、一节铅蓄电池电压:2V 13、对于人体的安全电压:≤36V(不高于36V) 14、动力电路的电压:380V 15、家庭电路电压:220V 16、单位换算: (1)、1m/s=3.6km/h (2)、1g/cm3 =103k 参考资料:啊、百度
112 评论(11)

pengleework

摘要:本文对共振进行讨论,重点是共振在社会上的应用及其带来的危害,并提出了一些解决方法。1.概述共振是指一个物理系统在特定频率下,以最大振幅做振动的情形。共振在声学中亦称“共鸣”,在电学中,振荡电路的共振现象称为“谐振”。自然中有许多地方有共振的现象,如:乐器的音响共振、太阳系一些类木行星的卫星之间的轨道共振、动物耳中基底膜的共振,电路的共振等等。但共振有利也有害,人类在自己的技术中利用或者试图避免共振现象。2.应用随着近代科学的发展,供着应用于越来越多的领域。在建筑工地,建筑工人在浇灌混凝土的墙壁或地板时,为了提高质量,总是一面灌混凝土,一面用振荡器进行震荡,使混凝土之间由于振荡的作用而变得更紧密、更结实。此外,粉碎机、测振仪、电振泵、测速仪等,也都是利用共振现象进行工作的。在人们的日常生活中,共振也充当着重要的角色,如常用的微波炉。具有2500赫兹左右频率的电磁波称为“微波”。食物中水分子的振动频率与微波大致相同,微波炉加热食品时,炉内产生很强的振荡电磁场,使食物中的水分子作受迫振动,发生共振,将电磁辐射能转化为热能,从而使食物的温度迅速升高。微波加热技术是对物体内部的整体加热技术,完全不同于以往的从外部对物体进行加热的方式,是一种极大地提高了加热效率、极为有利于环保的先进技术。再比如说收音机,电台通过天线发射出短波/长波信号,收音机通过将天线频率调至和电台电波信号相同频率来引起共振,将电台信号放大,再经过过滤后传至喇叭发声。还有市面上极为少见的共振音箱,它是让音频经过转换后以机械振动介质面(木质桌面、玻璃等),使介质整个物体产生共振,从而使物体播放出悠扬的乐曲。共振在医学上也有应用。专家研究认为,音乐的频率、节奏和有规律的声波振动,是一种物理能量,而适度的物理能量会引起人体组织细胞发生和谐共振现象,这种声波引起的共振现象,会直接影响人们的脑电波、心率、呼吸节奏等,使细胞体产生轻度共振,使人有一种舒适、安逸感。人们还发现,当人处在优美悦耳的音乐环境中,可以改善精神系统、心血管系统、内分泌系统和消化系统的功能,促使人体分泌一种有利健康的活性物质,提高大脑皮层的兴奋性,振奋人的精神,让人们的心灵得到了陶冶和升华。所以,人们已经开始运用音乐产生的共振,来缓解人们由于各种因素造成的紧张、焦虑、忧郁等不良心理状态,而且还能用于治疗人的一些心理和生理上的疾病。就医学影像学来说,核磁共振(MRI)是继CT后的又一重大进步。将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。3.危害 任何事物都有两面性,共振有时还会给人类造成巨大危害。这其中最为人们所知晓的便是桥梁垮塌。18世纪中叶,一座桥因大队士兵齐步走产生的频率正好与大桥的固有频率一致,使桥的振动加强,最终断裂 。1940年,美国的全长860米的塔柯姆大桥因大风引起的共振而塌毁,尽管当时的风速还不到设计风速限值的1/3,可是因为这座大桥的实际的抗共振强度没有过关,所以导致事故的发生。每年肆虐于沿海各地的热带风暴,也是借助于共振为虎作伥,才会使得房屋和农作物饱受摧残。近几十年来,美国及欧洲等国家和地区还发生了许多起高楼因大风造成的共振而剧烈摇摆的事件。地震时,地壳会产生各种波长的横波或纵波,当波传到地面上,会与建筑物产生强烈的共振,这样就造成了屋毁人亡的惨剧。另外还有许多例子:持续发出的某种频率的声音会使玻璃杯破碎;机器可以因共振而损坏机座;高山上的一声大喊,可引起山顶的积雪的共振,顷刻之间造成一场大雪崩;行驶着的汽车,如果轮转周期正好与弹簧的固有节奏同步,所产生的共振就能导致汽车失去控制,从而造成车毁人亡……人们在生活和生产中会接触到各种振动源,这些振动都可能会对人体产生危害。由科学测试知道人体各部位有不同的固有频率,因此,跟振动源十分接近的操作人员,如拖拉机驾驶员,风镐、风铲、电锯、镏钉机的操作工,在工作时应尽量避免这些振动源的频率与人体有关部位的固有频率产生共振。并且,为了保障工人的安全与健康,有关部门己作出了相应规定,要求用手工操作的各类振动机械的频率必须大于20赫兹。对人的身体而言,程度尤为厉害的是次声波所产生的共振。次声波是一种每秒钟振动很少、我们耳朵听不到的声波。次声波的声波频率很低,一般均在20兆赫以下,波长却很长,不易衰弱。自然界的太阳磁暴、海浪咆哮、雷鸣电闪、气压突变、火山爆发;军事上的原子弹、氢弹爆炸试验,火箭发射、飞机飞行等等,都可以产生次声波。在我们的周围,能够产生次声波的小型动力设备很多,如鼓风机、引风机、压气机、真空泵、柴油机、电风扇、车辆发动机等。次声波的这种神奇的功能也引起了军事专家的高度重视,一些国家利用次声波的性质进行次声波武器的研制,目前已研制出次声波枪和次声波炸弹。不论是次声波枪还是次声波炸弹,都是利用频率为16—17赫兹的次声波,与人体内的某些器官发生共振,使受振者的器官发生变形、位移或出血,从而达到杀伤敌方的目的。现代科学研究已经证明,大量发射的频率为16—17赫兹的次声波会引起人体无法忍受的颤抖,从而产生视觉障碍、定向力障碍、恶心等症状,甚至还会出现可导致死亡的内脏损坏或破裂。这种次声波武器可以说是人类运用共振来危害人类自己的一种技术上的极致。4.讨论 共振该人类带来了许多危害,人类也提出了各种各样的解决办法。如电动机要安装在水泥浇注的地基上,与大地牢牢相连,或要安装在很重的底盘上,为的是使基础部分的固有频率增加,以增大与电机的振动频率之差来防止基础的振动。人们在电影院、播音室等对隔音要求很高的地方,常常采用加装一些海绵、塑料泡沫或布帘的办法,使声音的频率在碰到这些柔软的物体时,不能与它们产生共振,而是被它们吸收掉。 虽然人类现在并不能将共振所带来的危害全部消除,但我们可以努力将它降到最低,期待这一天早些到来。
133 评论(13)

huxx1010

到物理教学资源网吧物理教学的论文多
142 评论(9)

502054450

直接去参考下这类的期刊文献,像应用物理,现代物理、生物物理学等这些吧
264 评论(14)

菜园子phd

初中物理起始阶段的教学效果如何,不仅影响学生初中阶段的物理学习,而且还会影响到高中阶段文理分流的趋向.教学实践清楚地告诉我们,这个阶段第一学期的前半期尤为重要. 初二学生拿到物理课本后,一般都显得很自豪,想学好物理的求知欲很迫切.但是很快又发现,他们因受“物理难学”说法的影响,对物理学习产生了一种害怕、畏难心理,而且女同学占多数.因此,为使初二学生能自然地、比较平稳地踏上学习物理的轨道,起始阶段的教学应在提高学生学习兴趣和消除畏惧心理上下功夫. 一、充分发挥新教材的优势初二学生一开始的那种自豪感和迫切心情毕竟是短暂的,当他们进入课程教学后,能否保持较浓厚的兴趣,是他们能否学好物理的关键.1994年秋季使用的新教材较原教材能比较容易达到这一目的.新教材图文并茂、生动活泼、编排形式新颖;内容顺序的重新安排切合学生的实际;课题的引入既有趣又通俗易懂,对学生很有吸引力,很容易激发学生的兴趣.只要教师能充分重视引导学生阅读课本,发挥学生学习的主体作用,就能比较容易达到既提高学生的学习兴趣,又提高学生阅读能力的目的. 在学生阅读课本内容时我们发现,学生对课本上那些具有现代气息、形象直观的插图看得很投入,我们就因势利导,让他们回答这幅图是什么意思,那幅图说明课文中哪方面的内容.这样学生对课本内容的印象深了,便产生了学习兴趣.有些学生在课堂上对课本中的“阅读材料”看得很认真,教师可暗示他停止,但在下课前要提示学生课后去阅读,并把“阅读材料”中的内容稍加宣染,引起学生的普遍重视和兴趣. 新教材上的演示实验、学生随堂实验、分组实验、课…… 自由基生物学(free radical biology)是研究自由基在生物体系中产生和作用规律及其与疾病和健康关系的科学。自由基生物学是一门新兴的前沿和交叉科学,是一个具有重要理论意义和广泛应用前景并且与人类健康密切相关的科学。自由基不仅具有重要的生物功能,而且可以引起衰老和多种疾病的发生和发展。自由基生物学自1968年发现超氧化物岐化酶(superoxide dismutase,SOD)以来〔1〕,在过去三十几年时间获得了迅速发展和辉煌的成就。1998年,一氧化氮自由基研究获得诺贝尔生物和医学奖,将自由基生物学和自由基医学研究推向另一个新高潮〔2〕。今后自由基生物学在衰老和疾病关系的理论研究方面将有所突破,为人类健康和延寿做出更大贡献。物理学和自由基生物学看似两门相差很远的学科,其实关系很密切。从自由基生物学的发展来看,可以说,没有物理学的理论和技术就没有自由基生物学今天的辉煌,当然没有自由基生物学与物理学的结合,也许至今大部分人都还不知道什么是自由基。本文不打算在物理学和生物学方面做广泛讨论,只从自由基生物学这一学科讨论物理学与生物学的关系,也就是从生物物理学或物理生物学的一个侧面讨论物理学和生物学的关系。� 1 物理学是自由基生物学的基础� 可以毫不夸张地说,物理学是自由基生物学的基础,自由基的概念、理论和检测技术都是来自物理学。按照自由基的概念和定义,“任何包含一个未成对电子的原子或原子团,均称之为自由基”,从物理学角度看自由基的实质就是一个电子。电子除了具有质量�m,电荷e�之外,它还具有另一个特性,就是自旋S。所谓自旋,我们可以想像电子像地球一样绕一个轴旋转。电子是一个带电体,带电体的旋转就会产生磁场,这样一个旋转着的电子就好像一个小磁偶极子。在力学上可以用磁偶极矩�μ来描述,它具有方向性,因此是一个矢量。如果将这一磁偶极矩放在磁场H�中,它们之间就会产生一个相互作用能�E�,这个能量可以用量子力学的薛定谔方程描述和求解,即 这里g是一个没有量纲的常数,称为g因子,β是玻尔磁子。自旋磁矩与外磁场平行的电子具有较低的能量-gβH,自旋磁矩和外磁场反平行的电子具有较高的能量gβH。若用辐射的方法给处于低能级的电子一个能量hν,正好等于gβH,它们就会吸收这一能量跃迁到高能级,我们就称电子在频率ν�发生了共振。这就是电子自旋共振(electron spin resonance, ESR)或顺磁共振(electron paramagnetic resonance, EPR))的基本原理,也是检测自由基最特异、最直接和最有效的技术〔3〕。� 至此,我们可以看出,自由基完全可以用纯物理学的语言通过一个电子的物理性质来表述。正是描述一个电子在磁场中的自旋共振奠定了自由基的检测方法,才使得我们可以利用ESR波谱仪检测自由基,因此可以说ESR是自由基物理学,它包括自由基的基本理论和自由基的检测技术——电子自旋共振,当然还包括该技术在物理学中的应用。� 尽管在物理学中对自由基的研究已经很深入,甚至自由基在化学中的应用也获得巨大发展,比如,辐射化学和放射化学的反应基础都是自由基理论,有机化学中的聚合反应和有机化工也都是以自由基理论作为基础的,但是直到上世纪60年代,人们根本没有想到一个具有小小电子的自由基会与生物学有什么关系,更不能想像会产生一门独立的自由基生物学和该学科今日取得的辉煌。� �2 生物学与物理学的结合带来了自由基生物学的发展和辉煌�� 1968年,发现生物体内存在超氧化物岐化酶(SOD),而SOD的功能是清除和歧化超氧阴离子自由基,由此,人们认识到生物体内存在自由基〔1〕。许多物理学家和生物学家分别或联合起来开展了自由基生物学研究,三十多年来获得了巨大的发展和辉煌的成就。1998年,一氧化氮自由基研究获得诺贝尔生物和医学奖,将自由基生物学研究推向一个新高潮〔2〕。这归功于物理学与生物学结合的生物物理学或物理生物学研究。自由基生物学在以下几个方面取得突出进展:�� 1 建立和发展了多种检测自由基的新技术和方法� 自由基检测是研究自由基的关键。物理学发展了多种检测短寿命自由基的手段,如研制成功时间分辨的ESR技术和ESR成像仪,不仅可以检测自由基的种类和浓度,而且可以检测自由基在生物体内的空间分布。并且利用这些方法系统地研究了氧自由基和一氧化氮自由基的性质、生物功能和疾病的关系,特别是在炎症、心脑缺血再灌注损伤和神经退行性疾病中的作用〔4—6〕。� 上世纪60年代建立和发展起来的用氮氧自旋标记技术,使ESR技术的应用范围扩展到生物学的各个领域,其中包括研究细胞膜和蛋白质构象及其动力学性质技术,研究细胞膜磷脂和膜蛋白巯基结合位置的结构特点和动力学性质〔7〕。�� 2 自由基在生物体内的产生和功能� 随着自由基生物学的发展,发现体内很多细胞活动过程都与自由基的产生和参与有关,酶的活化、电子的传递、白细胞的免疫反应都离不开自由基。体内主要通过以下几个途径产生自由基〔8—10〕:� (1) 白细胞和多形核白细胞在吞食外来异物和细菌过程产生呼吸爆发,释放大量活性氧,其中包括超氧阴离子自由基、羟基自由基、过氧化氢、单线态氧等。它们既可以作为杀伤外来入侵者的有力武器,在炎症和免疫方面发挥着巨大作用,但是也可以对正常细胞膜及其他细胞成分产生损伤作用。� (2)线粒体的正常功能是通过氧化磷酸化在呼吸链上将氧气还原成水,合成ATP,为细胞提供能量。但有1%—3%的氧气生成自由基。这些自由基如果泄漏出来,就会造成严重的细胞损伤。� (3)一氧化氮自由基在脑的发育过程起着重要作用,它是神经传导的逆信使,在学习和记忆过程中发挥着重要作用。� (4)植物中叶绿体光合作用产生大量自由基,甚至在一些植物抗病、感病和免疫过程中自由基也发挥着重要作用。�� 3 自由基可以诱导细胞凋亡和导致疾病� 自由基虽然有很多生物功能,但如果产生过多就会对细胞造成损伤,引起一系列严重的神经疾病。我们系统地研究了一氧化氮和氧自由基在心脑缺血再灌注损伤和神经退行性疾病中诱导细胞凋亡和导致疾病的作用规律,发现一氧化氮和氧自由基在诱导细胞凋亡和导致这些疾病作用的分子机理和信号通路。老年痴呆症、帕金森综合症等神经系统疾病都有自由基的参与;在循环系统,动脉粥样硬化,血栓的形成,心肌缺血再灌注损伤的发病过程中,氧自由基起着重要作用;肝炎和糖尿病与氧自由基密切相关;致癌,促癌和癌的形成的每一步都有氧自由基的产生和参与〔11—14〕。� 我们在转基因细胞和动物模型中,利用电子自旋共振和基因沉默(RNAi)等技术系统研究了自由基诱导细胞凋亡和导致疾病规律,发现一氧化氮(NO)和氧自由基(ROS)及铁、铜等金属离子在心脏缺血再灌注损伤、中风、老年痴呆症、帕金森综合症等神经退行性疾病中均起着重要作用,并且参与了与淀粉样蛋白(Aβ)、细胞色素(C)C释放、活化有丝分裂蛋白激酶(MAPK)有关的信号通路中的作用
228 评论(12)

自由公子

(一)广义惯性使牛顿力学进化爱因斯坦独具慧眼,从司空见惯的现象中及自由落体运动与质量因素无关的经验事实,总结出了等效原理,且明确与准确地说:物体的同一性质按照不同的处境或表现为"惯性",或表现为"重性"([3]第55页)。这个同一性就是广义惯性,这个处境就是空间。牛顿第二定律实质是其第一定律涵义的数学表达式。所以,广义惯性的发现,其革命意义是指动摇了牛顿第一定律的核心地位。广义惯性包含了牛顿惯性,所以,又是其进化。同时,也说明了需要建立一个取代牛二律的进化性质的核心命题系统的新力学理论。广义惯性又引出了两种空间及其区别的新问题。这个新问题困扰了爱因斯坦的一生,走了一大圈"弯"路后,在他晚年时,才看到了解决这个问题的曙光--物体具有空间的广延性([3]第十五版说明),由此"广延性"再往前走一步,就是[2]文说的ρ空间及其区别的标志是其梯度值的有否。这说明还需要一个新的涉及空间的基本概念及与其相对应的原来等效原理所没有涉及到的新的经验事实:物体质量部分的压强梯度现象(注:在固态的具体物体内部,此"压强梯度"表现为"胁强"),也就是爱因斯坦的物体的空间广延性的具体体现。同时也引出了物体的非刚性及其具有内部空间结构的抽象性质([4]第六章)。于是,"万事俱备",只欠建立一个新的核心命题系统了。可以说,惯三律就是这个系统。广义惯性是由于把"重性"也归于同牛顿惯性一样的物体属性,所以,其革命意义也主要体现在"重力"方面。"引力"是对重力本质的错误认识。广义惯性与场概念把原来引力中的两个平权的物体分离开来:一个是仅表现广义惯性的一般(非整体)物体;另一个是具有产生重力场的特殊性的中心物体。一般物体与中心物体之间已经没有"力"的关系了。但通过重力场(原来引力场与自转惯性离心力合成的重力场涵义需要改变)有"能"的关系(见此文的"ρ空间与能"一节)。到此为止,广义惯性已经完成了其逻辑任务,即取消了引力及导出了中心物体的特殊性(当然也具有广义惯性的一般性)。这个特殊性的中心物体就是整体天体。于是,广义惯性与整体天体就构成了理论的内部逻辑性(也就是"自圆其说")。广义惯性取消了惯性质量与引力质量的区别。当然,更没有质量的第三个属性--产生引力场。说重力场是特殊的ρ空间,也有其对应的经验事实,即具有重力场的质量部分的天体,一般都具有密度及压强(也有温度及磁场因素)与中心距离近似反比分布(中聚度)的现象。同时,其现象也表明了这个天体(中心物体)的特殊性。中聚度现象已经是整体性的一种体现。(二)再看牛顿力学为什么人们回避牛顿第二定律中的"力"(外力)的反作用力就是物体的惯性力的道理呢?就是因为把重力也当作外力(引力)时,物体本身没有反作用力 --惯性力(重力加速度与物体质量的大小无关),这正是牛顿力学理论内部的不能"自圆其说"的地方,这也正是爱因斯坦所注意的地方。为了回避这矛盾性(无意识的),不得不让其"外力"担当"广义"的力的重任。"力是物体加速运动的原因"这一没有条件限制的观念,是牛顿力学最主要的思维定势。不管是相对的加速运动还是"绝对"的加速运动,人们都在头脑中马上反映出来要乘上物体的质量,使力成为其运动的原因。于是,其直接错误后果就是把非牛顿惯性系内或重力场内的物体"自由"或有阻力的"不自由"的加速运动,也当作有外力(不包括阻力)正在作用之。之所以把非牛顿惯性系中的外力惯性力叫做虚构力,是说明牛顿力学中还有第二个观念:"力是物体对物体的直接作用"--这是作用方式力,但有的教材除了摩擦力外,把作用方式力几乎都归结于弹性力则是错误的。又从这第二个观念来看其外力惯性力时,真的不存在另一个物体来表现之,只得权宜称为虚构力。当把重力也当作外力时,发现确实有另一个物体(中心物体)与之对应,这可是"真实"的外力了。麻烦又出现了,这个引力是超距作用性质的力,从作用方式力的观念角度来看时,又难理解了。为了让引力回复到可理解的直接作用性,又引起了从牛顿时代起至今的许多人去虚构在两个超距的物体之间飞来飞去的各种"微粒子",以此物来担当引力成为直接作用性的重任。引力本来也是虚构力,还要为这虚构的"东西"再虚构一些东西,麻烦可就大了。因为凡是具有质量的物体都具有广义惯性,也可以说是"万有"惯性。之所以惯性力学在力学体系中占有主要及重要的地位,而其他属性(如弹性与磁性等)力学占次要地位,且以"惯性力"作为力的物理单位,也是由于其"万有"的原因。但作为表现广义惯性力的重力的空间(重力场)及场源物体(整体天体)可不"万有"。这两个角度分不开,还会认为重力(引力)"万有",这又会回到为什么会超距作用的难理解的怪圈。广义惯性使探索"引力作用机制"的研究方向成为毫无意义的方向,是徒劳无功的方向,因为引力本身是由牛二律的局限性而派生出来的虚构的力。(三)再看广义相对论爱因斯坦特有的知识结构(马赫哲学、狭义相对论、四维时空、光、场及黎曼几何),决定了他走上了一条充满荆棘的理论之路。马赫的功绩是看到了牛顿力学体系中有一个缺陷,就是物体的运动状态依参考系的不同而有所不同,于是,作为判断牛顿惯性运动的前提也就成为不确定的了(相对性)。不得已,马赫把现象世界的远处的恒星当作其绝对参考系了。马赫的错误就是把牛顿惯性定律中的物体的属性(保持性)与其运动状态问题混在一起了。爱因斯坦受马赫哲学的启发,又发现了等效原理,但同时又继承了马赫的错误。被夸大为改变人们时空观念意义的四维时空,只不过是用"运动"(还是光运动)角度来规定空间的一种方法。规定有结构的空间可有各种方法,其各种方法是平权的。用什么方法来规定空间则取决于理论与实践的需要。如果去掉了"光速"的弯曲时空还有力学意义的话,与牛顿引力定律正是互为补充的关系本体性的场的描述:一个是以广义惯性"运动"的角度的描述;一个是以广义惯性"力"的角度的描述。而牛顿引力势所包含的空间意义,正是中心结构的ρ非均匀空间(重力场)的经验性的描述。终究是"描述",都不能代替核心命题性质的"表述"。没有明确的命题表述,其描述也就没有明确的理解前提。惯三律与广义相对论都以等效原理为其经验基础。只不过爱因斯坦又走上了光速的等效原理之路。而光速的等效原理是由"思维"实验得来的,且唯一能验证其理论的星光在太阳附近偏转现象,爱因斯坦在具体计算其偏转角度时,实际上是"非常谨慎地用惠更斯原理"([5]第23页)。而惯三律所依据的" 低速"等效原理,连幼儿园里的儿童都可以感觉到坐滑梯时的加速度与坐汽车时的汽车加速度的区别,因其身体内有胁强的有否或大小之区别。战斗机飞行员已经体验了低速等效原理的所有内涵。所以,任何脱离与回避"低速"等效原理的力学理论,肯定是不会成功的理论,因为其现象普遍存在于客观世界,且与力学密切相关。爱因斯坦之所以对"光"情有独钟,也许是无意识的回避其理论中的一个内在矛盾:"产生"引力场的中心质量(中心物体)必须很大,而体现弯曲时空(引力场)作用的物体必须很小且产生与不产生引力场无关紧要,这与引力中的两个平权的物体涵义是矛盾的。而"光子"正好是最小的物体,也就回避了这个矛盾。只有"整体天体才产生重力场"的结论,才可以解决这个矛盾。引力波、黑洞与四种相互作用力的统一的课题,来源于爱因斯坦。引力已经不存在了,当然"引力"波也不存在了;如果重力场有边界,重力场就与电磁场不同,当然引力"波"也不存在了。如果以光线在重力场中弯曲的角度而导出的"黑洞",黑洞不存在,因为光线在重力场中弯曲的原理不是由于"引力";如果是由于"弯曲时空"原理而导出的"黑洞",黑洞也不存在,因为本来弯曲时空是由光线的弯曲(光子的广义惯性运动)而规定出来的,反过来又认为光线的弯曲是由弯曲时空所造成的,这是什么逻辑?如果光线在重力场中有红移效应,那么,由此原理而导出的黑洞,黑洞有可能存在。引力都不存在了,也就无所谓四种相互作用力的统一的问题。目前的"大统一理论"仅剩下"引力"没有被统一进去,也正说明了这个问题。经归纳的现象)再变为抽象层次的基本概念的过程,是人们最不习惯的过程,总不容易摆脱"具象"。之所以不习惯,其原因之一也是因为人们先有了原来理论的抽象及已经习惯了的思维方式,即使有了"具象"也看不到其抽象意义。而由抽象变为"具象"的过程,那可容易多了,但也往往"具象"出来客观世界不存在的东西。从逻辑学角度,基本概念是不能被其它概念来定义的概念,其内涵具有一定的模糊性。ρ空间也是如此,只能用"感觉"到的物体质量部分的压强梯度现象来说明之,但又不是压强梯度本身。"真空"是具象空间,真空里照样存在"重力场"的ρ梯度值的有否,可用具象的压强梯度来检验之。但不能认为真空是ρ均匀空间。ρ空间与压强梯度的关系可类比铁粉末直观表现磁场结构的关系。摆脱不了具象,不能变为一个基本概念,也是爱因斯坦的"一无所有"的空间怎能分出两种空间的困惑原因之一,而用"运动"规定出来的弯曲时空又不能区分出是表述了物体的广义惯性还是表述了场的属性。特别强调的是:物体内部空间只能指物体质量部分所占据的空间,也是爱因斯坦晚年醒悟的"物体具有空间广延性"的涵义;而重力场空间不仅包含质量部分(整体天体)的空间,也包含没有质量部分的空间。这样就避免了变为"一无所有"的无边界的抽象参考系而带来的"相对"不清的问题。总的说来,ρ空间仅在数学形式上是标量场(其梯度为矢量场),但在物理意义上,则包含了表述广义惯性、可变为物体内部空间及重力场的本体性场、势、能、熵与质量部分的压强梯度等涵义。
108 评论(10)

相关问答